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A modified hill-climbing algorithm based on Zernike modes is used for laser beam correction. The algo-
rithm adopts the Zernike mode coefficients, instead of the deformable mirror actuators’ voltages in a
traditional hill-climbing algorithm, as the adjustable variables to optimize the object function. The effect
of the mismatches between the laser beam and the deformable mirror both in the aperture size and the
center position was analyzed numerically and experimentally to test the robustness of the algorithm.
Both simulation and experimental results show that the mismatches have almost no influence on
the laser beam correction, unless the laser beam exceeds the effective aperture of the deformable mirror,
which indicates the good robustness of the algorithm. © 2014 Optical Society of America
OCIS codes: (220.1010) Aberrations (global); (110.1080) Active or adaptive optics; (140.3300) Laser

beam shaping.
http://dx.doi.org/10.1364/AO.53.00B140

1. Introduction

Adaptive optics (AO) is a well-established technique
for correctingwavefront aberrations of the laser beam
and improving beam quality, which thereby can im-
prove the performance for fabrication or imaging of
the system. The AO technique has been developed
quickly and plays important roles in astronomical
imaging [1,2], vision science [3,4], microscopy [5,6],
and high-energy lasers [7,8].

The wavefront sensor-less AO system has been
widely used for laser beam correction applications,
since this system has a relatively simple structure
compared to the traditional AO system with a wave-
front sensor. In the wavefront sensor-less AO system,
the optimization algorithm is adopted to find an
appropriate set of control voltages from the sets that
form the solution space. Various kinds of model-free

stochastic algorithms, such as hill-climbing algo-
rithm (HC) [9], genetic algorithm (GA) [10,11],
stochastic parallel gradient descent (SPGD) [12,13],
and simulated annealing algorithm (SA) [14,15],
have been used for laser beam correction. Alterna-
tively, several algorithms based on Zernike modes
have also been proposed for their fast-converging
speed. For example, the algorithm based on Zernike
mode has been used in laser beam aberration correc-
tion to improve the confocal microscope imaging
resolution [6], and the GA based on Zernike mode
has been used in intracavity transverse modes
control for the Nd:YAG solid laser [16].

A modified hill-climbing algorithm based on Zer-
nike modes (ZMHC) adopts the Zernike mode coeffi-
cients as the adjustable variables to optimize the
object function [17], while a traditional HC algorithm
uses the DM actuators voltages. This ZMHC algo-
rithm has been proved to have an ability to correct
the aberrations of the laser beam with a fast speed.
However, in practical application for laser beam
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correction, the diameter of the laser beammay not be
exactly equal to the effective aperture of the deform-
able mirror, and the center of the laser beam is
possibly misaligned to that of the deformable
mirror. The effect of these mismatches on correction
results based on such the aforementioned modal
algorithm has not been researched yet. In this paper,
the effect of themismatches for laser beam correction
will be investigated by simulation and experiment.

2. Principle of ZMHC Algorithm

It is known that for small aberration the Strehl ratio
(SR) of a laser beam does not depend on the form of
the wavefront aberrations but only on its variance
[18]. And the SR can be expressed simply as

SR ≈ 1 − σ2ϕ; (1)

where ϕ�r; θ� is the wavefront aberration and σ2ϕ is
the variance of the wavefront aberration. The r
and θ are polar radius and angle in the aberration
plane. As it is known, the aberrations ϕ�r; θ� can
be expressed as a series of N Zernike polynomials,
which is denoted by Zn�r; θ�

Φ�r; θ� �
XN
n�1

cnZn�r; θ�: (2)

As the finite modes Zernike polynomials of N are
used, a residual aberration exists due to the trunca-
tion of Zernike polynomials. Here, this residual aber-
ration is omitted, since it is usually very small. For
the orthogonality of the Zernike modes, the variance
of the aberration can be as

σ2ϕ �
XN
n�1

c2n: (3)

So the far field intensity I on the focal plane can be as

I ≈ I0

�
1 −

XN
n�1

c2n

�
; (4)

where I0 is the ideal intensity without aberrations.
In order to obtain the global maximum value of F,

cn should be adjusted to be 0 for n from 1 toN. Based
on this principle, the ZMHC algorithm adopts the
Zernike mode coefficients as the adjustable varia-
bles, replacing the actuator voltages in the tradi-
tional HC algorithm [17]. The procedure of the
ZMHC algorithm is as follows: First, to adjust cn
to be 0, an increment Δcn is added to cn to judge
the right adjusting direction, and second, cn is ad-
justed in the right direction with the increment
Δcn continuously until the evaluation function be-
comes worse. In actual operations, the voltage incre-
ment Δvn that generates the amount of the nth
Zernike mode (equal to Δcn) is applied to the control
voltages to get the corresponding adjustment of cn.

3. Mismatch Problems in Laser Beam Correction

In the ZMHC algorithm, the Zernike expansion and
the increment Δcn of the Zernike coefficient is calcu-
lated in a given circular field of the deformable
mirror’s effective aperture. However, the aperture
diameters of the DM and the laser beam are difficult
to match exactly. The size of the laser beam is usually
decided by the specific applications. Since the de-
formable mirror is not specially designed for the
application, the aperture diameter of the DM and
the laser beam is difficult to match exactly. Though
a telescope system can be used in some AO systems
tomatch the apertures of the DM and the laser beam,
the mismatch may still exist. In addition, it’s also dif-
ficult to precisely align the center of the laser beam
with the center of the DM’s effective aperture. There-
fore, the effect of the mismatches on correction
results is analyzed in this study. The mismatch
situations were categorized into three cases: Case I
[Fig. 1(a)], the aperture of the laser beam does not
match the effective aperture of the DM. Case II
[Fig. 1(b)], the center of the laser beam is not aligned
to that of the effective aperture of the DM but does
not exceed the DM’s effective aperture. Case III
[Fig. 1(c)], the two centers are not aligned, and the
laser beam exceeds the DM’s effective aperture.

4. Simulation

In most applications, the dominant aberrations are
low-order aberrations. The laser beam can get much
improvement after low order Zernike aberrations
corrected [19]. In this study, two different kinds of
DMs (both have 19 elements and 10 mm effective
aperture) were employed. The first DM (DM1) is a
homemade unimorph deformable mirror with a high
interactuator coupling [20]. The dual direction maxi-
mum defocus deformations of this DM are −14.3 μm
and 14.9 μm. The 19 elements in the three inner
rings were used for laser beam correction. The elec-
trodes are arranged in the hexagon pattern, as
shown in Fig. 1. The other DM (DM2) with low
inter-actuator coupling is simulated according to pie-
zoelectric stack DM [21] and BMC MEMS DM [22].
The influence function is in the form of Gaussian
distribution and the interactuator coupling value

Fig. 1. Schematic illustration of (a) Case I: the aperture diame-
ters do not match, (b) Case II: the two centers are not aligned, with
the laser beam still in the DM effective aperture, and (c) Case III:
the two centers are not aligned, with the laser beam exceeding the
DM effective aperture.
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is 0.15. The simulated normalized root mean square
(rms) errors for Zernike aberrations correction using
these two DMs are shown in Fig. 2. It can be found
that these two DMs have good correction ability for
the 15th Zernike modes aberrations. Besides, the tip/
tilt aberrations are usually corrected by tip/tilt
mirror; thus only the third to the 15th Zernike modes
are considered here.

In the simulation, two different aberrations were
generated randomly to be the supposed aberration,
denoted as aberration 1 and aberration 2. And the
Zernike expansion coefficients of the two aberrations
are shown in Fig. 3. The rms values of the two sup-
posed aberrations were 150 and 385 nm, respectively.
In correction process, the rms value of the residual
wavefront aberration was selected to be the evalu-
ation function. Both DM1 and DM2 are used to cor-
rect the supposed aberrations to analyze the effect of
the mismatch problems.

For Case I, the effective aperture of DMs was
10 mm and the aperture diameter of the laser beam
varied from 5 to 10 mm. The simulation results are
shown in Fig. 4. When two different aberrations with
different aperture change from 5 to 10 mm, the rms
values of the residual wavefront after correction us-
ing DM1 and DM2 change less than 10 nm, as shown
in Fig. 4. Compared to the initial rms values of the
supposed aberrations, the rms values of the residual

wavefront after correction have very little significant
change. It can be found that similar correction re-
sults are achieved for different laser beam apertures
mismatched with the DM effective aperture.

The simulation results of effects of center offset
(Cases II, III) are shown in Fig. 5. For Case II, the
laser beam aperture of 7 mm was selected, which
was smaller than the DM’s effective aperture
(10 mm). To make sure the laser beam does not ex-
ceed the DM’s effective aperture, the center offset is
0, 0.5, 1, and 1.5 mm, respectively. The residual
wavefront rms errors after correction using DM1 in-
crease from 36 to 40 nm for aberration 1 and increase
from 38 to 45 nm for aberration 2 as the increase of
center offset. The rms values after correction using
DM2 for aberration 1 and aberration 2 also change
less than 10 nm with the center offset changes [as
shown in Fig. 5(a)]. It indicates that the offset of
the center almost has little effect on the correction
results. For Case III, the laser beam aperture was
10 mm; thus the laser beam would exceed the DM
effective aperture with its center offset. As shown
in Fig. 5(b), all the rms values of correction results
for both two supposed aberrations and DMs increase
rapidly with the increase of the offset. In other words,
the correction results become worse with the in-
crease of the center offset.

5. Experiment Results

A. Experimental Setup

In order to evaluate the effect induced by the
mismatches of the aperture diameter and the center
position, an AO system for laser beam correction was
established. The schematic of the experimental setup
is illustrated in Fig. 6. A polarized 633 nm helium–

neon laser was selected as the light source. After
being expanded, the light beam passed through a
beam splitter (BS) and reached the DM that was
driven by 19-channel high-voltage amplifier (HVA).
Here, the 19-element unimorph deformable mirror
(DM1) was employed. Then the reflected beam from

Fig. 2. Simulated normalized rms error for correction Zernike
aberrations.

Fig. 3. Zernike coefficients of the generated wavefront.

Fig. 4. Correction results for mismatched apertures: the DM’s
effective aperture was 10 mm and the laser beam aperture varied
from 5 to 10 mm.
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the DM passed through an aperture (AP). The size
and center position of the laser beam to be corrected
could be adjusted by the AP. Finally the laser beam
was focused by a focus lens (FL, focus length
120 mm), and the focused spot was magnified 10
times by an objective lens (OL) and captured by a
CCD camera.

B. Results and Discussion

In the experiments, the CCD-measured maximum
intensity of the far field focal spot was selected
as the evaluation function for the ZMHC algorithm,
and the appropriate Zernike mode coefficients
were found by the ZMHC algorithm in the closed-
loop. The experiments for each situation were
repeated 10 times to analyze the effect induced by
the mismatches of the aperture diameter and center
position.

To evaluate the effect of the mismatch of the aper-
ture diameter (Case I), the aperture of the laser beam
to be corrected was selected to change from 5 to
10 mm, and the effective aperture of the DMwas con-
stant (10 mm). The far field focal spots after correc-
tion with different apertures are shown in Fig. 7. It
can be found that circular light spots have been
achieved for all the apertures, though a few speckles

appear around. It is known that the diameter of Airy
disc’s central spot can be calculated by equation:
D � 2.44λf∕d. As the diameter of the laser beam
changes from 5 to 10 mm, the size of the far field
central spot also changes, which coincides with the
calculated results based on the equation.

Since the power of the laser could fluctuate during
repeated tests, intensity concentration instead of the
maximum light intensity was adopted to evaluate
the corrected spots of different experiments, which
is defined as the ratio of the intensity concentrated
in the region of the Airy disc’s central spot to the total
sum of intensity in the whole region. The intensity
concentration of all the results is calculated, and
the average values and standard deviations of the
concentration with different laser beam apertures
are shown in Fig. 8. It is known that the ideal inten-
sity concentrate of the Airy disc is about 83.8% [23].
As it is shown in Fig. 8, all the intensity concentra-
tion results have an average value about 0.75 with a
small standard deviation less than 0.03. Comparing
to the calculated intensity concentration with that of
the Airy disc, it can be found that good correction re-
sults are achieved for all the laser beam apertures,
which indicates the mismatch of the aperture has al-
most no effect on the laser beam correction results.

To analyze the effect from the mismatch of the
center position, the experiments for Case II and
Case III were performed, respectively. For Case II,
the aperture of the laser beam was selected as
7 mm, which was smaller than the DM’s effective
aperture (10 mm). To make sure the laser beam does
not exceed the DM’s effective aperture, the center off-
set is from 0.5 to 1.5 mm. The far field focal spots
after correction with different center offsets are
shown in Fig. 9. From the correction results of differ-
ent center offsets, it can be found that the central
spots have the similar shape and maximum inten-
sity. Besides, few speckles appear in all the spots
in Fig. 9. So it can be seen that similar far field focal
spots are achieved after correction. The average val-
ues and standard deviation values of the concentra-
tions of different center offsets were calculated. The

Fig. 5. Correction results for different center offsets. (a) The laser beam aperture did not exceed the DM’s effective aperture. (b) The laser
beam aperture exceeded the DM’s effective aperture.

Fig. 6. Schematic illustration of the experimental setup for
aberration correction.
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results are shown in Fig. 10. It can be found that all
the intensity concentrations results have an average
value about 0.75 with a small standard deviation less
than 0.02. The results of both the far field spots and
the intensity concentration indicate that small offset
between the centers of the laser beam and the DM’s
effective aperture will bring little effect on the correc-
tion results, when the laser beam does not exceeded
the DM effective aperture.

For Case III, the aperture of the laser beam was
selected as 10 mm, and the center offset between
the laser beam and the DM effective aperture was
set to be from 0.5 to 2 mm. As the increase of the

offset value, the area of laser beam exceeding the
DM’s effective aperture increases. The far field beam
spots after correction with different center offsets are
shown in Fig. 11. It can be found that the central spot
becomes worse in the respects of the shape and maxi-
mum intensity with the offset of the centers increas-
ing. Besides, the amount of speckles also increases.
The average values and standard deviation values
of the concentration results are shown in Fig. 12.
It can be found that the intensity concentrations be-
come worse obviously even the center offset is only
0.5 mm. And the intensity concentrations become
worse continuously with the center offset increasing.
The results of both the far field spots and the inten-
sity concentration indicate that the correction effect
becomes worse rapidly as the offset of the two centers
increases if the laser beam exceeds the effective
aperture of the deformable mirror.

From all the experimental results, it is demon-
strated that the mismatches of the aperture diam-
eter and the center position have almost no effect
on the laser beam correction results, when the laser
beam does not exceed the DM’s effective aperture.
And the same conclusion can be also drawn from
the simulation results. The reason for that the mis-
matches have no effect on correction results in Case I
and Case II can be considered simply as follows.
Though the mismatches exist, the laser beam is still
in the DM’s effective aperture area. Here the DM
controlled by the ZMHC algorithm can correct the
wavefront aberrations in all the area of the effective
aperture; thus the aberration of the laser beam area

Fig. 7. Far field beam spots after correction with different apertures: (a) 5 mm, (b) 6 mm, (c) 7 mm, (d) 8 mm, (e) 9 mm, and
(f) 10 mm.

Fig. 8. Intensity concentration of the laser beam spots of different
apertures.
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is also corrected. However, when the laser exceeds
the effective aperture with the offset of the centers,
the correction ability out of the effective aperture be-
come worse fast. It is the reason that the correction
results become worse fast in the Case III.

6. Conclusion

This paper proposes a modified hill-climbing algo-
rithm based on the Zernike modes for the laser beam
correction and demonstrates its robustness. This al-
gorithm adopts the Zernike mode coefficients instead
of the actuators voltages as the adjustable variables.
The effect on laser beam correction of the mis-
matches of the aperture size and the center position
between the laser beam and the deformable mirror’s
effective aperture was investigated. The results of
both simulations and experiments demonstrate that
the mismatches of the aperture diameter and the
center position have almost no effect on the laser
beam correction results, unless the laser beam ex-
ceeds the DM’s effective aperture. For this advan-
tage, the alignment precision and aperture match
demand of the laser beam correction system can be
reduced, and this algorithm can have a wide applica-
tion space in the wavefront sensor-less AO systems.
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and (d) 2 mm.

1 April 2014 / Vol. 53, No. 10 / APPLIED OPTICS B145



No. 2011CB302101), the National Natural Science
Foundation ofChina (GrantNo. 11303019) andChina
Postdoctoral Science Foundation (No. 2013M531521).
The author also thanks the Material Science and
Technology Center Development Foundation of Hefei
(No. 2012FXCX002).

References
1. C. H. Rao, L. Zhu, X. J. Rao, C. L. Guan, D. H. Chen, S. Q.

Chen, J. Lin, and Z. Z. Liu, “Performance of the 37-element
solar adaptive optics for the 26 cm solar fine structure
telescope at Yunnan Astronomical Observatory,” Appl. Opt.
49, G129–G135 (2010).

2. A.Guesalaga,B.Neichel,J.O’Neal,andD.Guzman,“Mitigation
of vibrations in adaptive optics by minimization of closed-loop
residuals,” Opt. Express 21, 10676–10796 (2013).

3. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. H. Zhang, P.
Tiruveedhula, and A. Roorda, “Retinally stabilized cone-
targeted stimulus delivery,” Opt. Express 15, 13731–13744
(2007).

4. N. Doble and D. R. Williams, “The application of MEMS
technology for adaptive optics in vision science,” IEEE J.
Sel. Top. Quantum Electron. 10, 629–635 (2004).

5. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. D. Tao, M.
Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics
wide-field microscopy using direct wavefront sensing,” Opt.
Lett. 36, 825–827 (2011).

6. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson,
“Adaptive aberration correction in a confocal microscope,”
Proc. Nat. Acad. Sci. USA 99, 5788–5792 (2002).

7. T. A. Planchon, J. P. Rousseau, F. Burgy, and G. Cheriaux,
“Adaptive wavefront correction on a 100 TW/10 Hz chirped
pulse amplification laser and effect of residual wavefront on
beam propagation,” Opt. Commun. 252, 222–228 (2005).

8. M. L. Gong, Y. T. Qiu, L. Huang, Q. Liu, P. Yan, and H. T.
Zhang, “Beam quality improvement by joint compensation
of amplitude and phase,” Opt. Lett. 38, 1101–1103 (2013).

9. P. Yang, W. Yang, Y. Liu, S. J. Hu, M. W. Ao, B. Xu, and W. H.
Jiang, “19-element sensor-less adaptive optical system based
on modified hill-climbing and genetic algorithms,” Proc. SPIE
6723, 31–37 (2007).

10. T. Planchon, W. Amir, J. J. Field, C. G. Durfee, and J. A. Squier,
“Adaptive correction of a tightly focused, high-intensity laser
beam by use of a third-harmonic signal generated at an
interface,” Opt. Lett. 31, 2214–2216 (2006).

11. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of
fitness parameters used in an iterative approach to aberration
correction in optical sectioning microscopy,” Appl. Opt. 47,
731–736 (2008).

12. H. T. Ma, Q. Zhou, X. J. Xu, S. J. Du, and Z. J. Liu, “Full-
field unsymmetrical beam shaping for decreasing and
homogenizing the thermal deformation of optical element
in a beam control system,” Opt. Express 19, A1037–A1050
(2011).

13. P. Piatrou and M. Roggemann, “Beaconless stochastic parallel
gradient descent laser beam control: numerical experiments,”
Appl. Opt. 46, 6831–6842 (2007).

14. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated
annealing in ocular adaptive optics,” Opt. Lett. 31, 939–941
(2006).

15. R. El-Agmy, H. Bulte, A. H. Greenaway, and D. T. Reid,
“Adaptive beam profile control using a simulated annealing
algorithm,” Opt. Express 13, 6085–6091 (2005).

16. P. Yang, M. W. Ao, Y. Liu, B. Xu, and W. H. Jiang, “Intracavity
transverse modes controlled by a genetic algorithm based on
Zernike mode coefficients,” Opt. Express 15, 17051–17062
(2007).

17. Y. Liu, J. Q. Ma, B. Q. Li, and J. R. Chu, “Hill-climbing
algorithm based on Zernike modes for wavefront sensor-
less adaptive optics,” Opt. Eng. 52, 016601 (2013).

18. M. J. Booth, “Wavefront sensorless adaptive optics for large
aberrations,” Opt. Lett. 32, 5–7 (2007).

19. S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot,
P. Georges, R. Gaumé, B. Viana, G. P. Aka, and D. Vivien,
“Thermal lensing measurements in diode-pumped Yb-doped
GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22,
129–137 (2003).

20. J. Q. Ma, Y. Liu, T. He, B. Q. Li, and J. R. Chu, “Double drive
modes unimorph deformable mirror for low-cost adaptive
optics,” Appl. Opt. 50, 5647–5654 (2011).

21. P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Z. Dong, H. Yan, W. J.
Liu, W. H. Jiang, L. Liu, C. Wang, X. B. Liang, and X.
Tang, “Enhancement of the beam quality of nonuniform
output slab laser amplifier with a 39-actuator rectangular
piezoelectric deformable mirror,” Opt. Express 18, 7121–
7130 (2010).

22. T. G. Bifano, P. Bierden, and S. A. Cornelissen, “MEMS
deformable mirrors for space and defense applications,” Proc.
SPIE 6959, 695914 (2008).

23. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon,
1983).

B146 APPLIED OPTICS / Vol. 53, No. 10 / 1 April 2014


