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ABSTRACT: Dynamically responsive liquid-infused interfacial materials have broad
technological implications in manipulating droplet motions. However, present works are
mainly about reversible tuning of the isotropic slippery surface; the reversible switching
between isotropic and anisotropic sliding has not been deeply explored. Here, we report a
kind of liquid-infused elastic-grooved surface (LIEGS) by femtosecond laser ablation and
realize reversible switching between isotropic and anisotropic sliding by one-direction
mechanical stretching. Under mechanical stretching and strain release, droplet motion
can be reversibly switched between the sliding and pinned states along the perpendicular
direction to the grooves, whereas the droplet keeps sliding along the parallel direction to
the grooves. The mechanism of reversible switching mainly contributes to the decrease of
film thickness during the stretching process in which the film thickness decreases from 13
to 4 μm with the increase of the strain from 0 to 60%. Finally, we demonstrate the real-
time flexible control over a droplet sliding/pinned on the strain-changing LIEGS.

■ INTRODUCTION

Inspired by the peristome of Nepenthes pitcher plants, slippery
liquid-infused porous surfaces (SLIPS) have been studied for
several years. Aizenberg and co-workers first introduced the
concept of liquid-infused surfaces, which consist of a
lubricating liquid film locked in place by a porous substrate
and have several excellent properties including self-cleaning,
self-healing, anti-ice, anti-frost, anti-biofouling, exceptional
liquid repellency, pressure stability, and so on.1−6 Thus, a
slippery surface has widespread applications in the fields of
anti-frost,3 drag reduction,7 enhanced condensation,8 and the
smart dynamic control of a droplet.9−24 For instance, the
Nepenthes pitcher plants utilize the surface structure to lock in
slippery liquid to hunt insects which step on them and slide
from the rim to the bottom.11 Yong et al. fabricated a slippery
liquid-infused porous surface by femtosecond laser direct
writing for promoting/inhibiting the growth of C6 glioma
cells.12,13 In addition, a large number of research studies have
attempted to reveal the mechanism of controlling the liquid
droplet on SLIPS. In general, SLIPS have better repellency to
low surface tension liquids including all kinds of alkanes and so
on, but the infused slippery liquid which completely covers the
substrate multiscale micro-/nanostructure hinders the flexible
control over liquid droplet dynamics.
Taking hints from dynamically responsive materials in

nature, researchers have focused their study on dynamically

adaptive SLIPS, which are capable of accessing a range of
continuous and adjustable topographies to realize multifunc-
tional surface properties. For example, Heng et al. prepared a
kind of porous and conductive film to achieve electrically
driven droplet motion by voltage and explored the effect of
lubricant viscosity on self-healing properties.14 They also
fabricated a kind of photoelectric synergetic responsive SLIPS
based on tailored anisotropic films generated by interfacial
directional freezing.15 Moreover, Hu et al. prepared a
dynamically actuated liquid infused poroelastic film with
control over droplet dynamics, which is achieved by voltage.16

However, the above responsive strategies need complicated
external energy inputs such as the extra electric energy when
the voltage is applied to photoelectric synergetic responsive
materials,14−16 which may not be convenient for the
manipulation of biological droplets.
Mechanical stretching is an environment-friendly, cost-

effective method to tune the surface wettability. Kim and co-
workers fabricated an elastic composite substrate using
photolithography to achieve switchable wettability between
the lotus effect and the petal effect with mechanical strain.19

Yin et al. also prepared a kind of hierarchical wrinkles on the
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plasma desorption mass spectrometry to realize a potential
multifunctional smart window and structural color.25 However,
the above tunable process is not based on slippery surfaces;
thus, these surfaces are only suitable for water droplet and not
for diverse droplets. Yao et al. designed a kind of adaptive
liquid-infused porous film by chemical adhesive to realize
tunable transparency and wettability by mechanical stretch-
ing,26 which can be used for manipulating various liquids, for
example octane, decane, and so on. However, it is worth noting
that the fabrication of the elastic materials in the above
research studies not only is a multistep process and time-
consuming but also easily causes potential environmental
pollution by chemical agents during the tuning process. Most
importantly, present works are mainly concentrated on the
reversible tuning of isotropic elastic materials;16,26 the
reversible switching between isotropic and anisotropic sliding
by mechanical stretching on the liquid-infused elastic surface
has not been deeply researched. Moreover, to achieve
progressive practical applications, the influence of spin-coating
speed, droplet volume, and laser power on the degree of sliding
angles at different strains and the mechanism of droplet
interaction with micro-grooved slippery surfaces should be
further systemically studied.
Herein, we report a kind of one-dimensional microgroove

slippery surface by femtosecond laser scanning and liquid
infusion, which can realize reversible switching between
isotropic and anisotropic sliding by one-direction mechanical
stretching. Through mechanical stretching and strain release,
droplet motion is reversibly switched between the sliding and
pinned states along the perpendicular direction to the grooves,
whereas the droplet is always sliding along the parallel
direction to the grooves. The mechanism of reversible
switching mainly contributes to the decrease of the lubricant
film thickness during the stretching process, and the droplet
contacts with the uneven oil film at high strain, which shows a
high hysteresis resistance to the liquid. Additionally, the
relationship between the sliding angle and the strain under
different rotation speeds, droplet volumes, and laser power is
explored. Finally, we demonstrate the real-time flexible control
of droplet sliding/pinned on the strain-changing liquid-infused
elastic grooved surface (LIEGS). We believe that this work will
provide new insights to researchers in achieving the mechanical
responsive in situ tunable droplet motion on the smart
responsive liquid-infused surface for broad applications.

■ RESULT AND DISCUSSION
Figure 1a shows the fabrication process of LIEGS. First, the
grooved structure on a silicone sheet is prepared by
femtosecond laser ablation in the homemade optical
fabrication system, which has been introduced in our previous
research studies.27−29 It is worth noting that femtosecond laser
is a facile strategy to process superwetting microstructures in
the fabrication of the slippery surface, which has been deeply
explored in many research studies.30−33 Then, the silicone oil is
added on the textured surface by spin-coating to form a stable
and uniform lubricant film so that the LIEGS is prepared. It is
demonstrated in Figure 1b that the droplet motion state is
affected by different tensile strains. Along the perpendicular
direction to the grooves, the water droplet can easily slide on
the original LIEGS, whereas it is pinned when the LIEGS is
stretched to a certain degree. As shown in Figure 1c, there is a
micro-scale grooved structure and nano-scale particles which
are in favor of forming a superhydrophobic substrate so as to

hold a stable and uniform lubricant film. Figure 1d shows water
contact angle (WCA) and water sliding angle (WSA) on the
unstretched and stretched LIEGS along the perpendicular
direction to the grooves. It can be seen that the WCA
(∼73.2°) on the unstretched LIEGS is smaller than that
(∼121.1°) on the stretched LIEGS because of the exposed
hydrophobic silicone sheet substrate and the enhancement of
wettability by textured structures. Additionally, the water
droplet could easily slide on the unstretched LIEGS with a
WSA of ∼7.8°, whereas it is pinned on the stretched LIEGS
even as the tilted angle comes to ∼90°. Figure 1e demonstrates
the sliding behavior of the droplet along the parallel direction
to the grooves. It can be seen that the droplet slides on both
stretched and unstretched LIEGS with a smaller WSA of ∼9°.
Therefore, we have realized reversible switching between
isotropic and anisotropic sliding on the LIEGS by one-
direction mechanical stretching.
In order to explain the mechanism of dynamic control over

droplet motions on the LIEGS, we study the force analysis of
the droplet on the stretched LIEGS. As shown in Figure 2a, the
driving force of droplet motion is the axis-direction component
of gravity, which is calculated as Fdriven = ρ × V × g × sin α (ρ,
V, g, and α denote the water density, water volume,
gravitational acceleration, and tilted angle of the substrate).
The adhesive force and another component of the gravity
guarantee the droplet’s interaction with the LIEGS. The
dominating motion resistance is caused by the contact angle

Figure 1. Fabrication process, surface characterization, and
application of the mechanical responsive LIEGS. (a) Detailed
fabrication process of LIEGS including two main steps: laser ablation
and lubrication process. (b) Schematics showing the in situ tuning
from sliding to pinned, which is dependent on the applied tensile
strain. (c) Scanning electron microscopy of the silicone sheet
patterned with an array of grooves. The grooves have an
approximately V-shaped cross section which can store the lubricant
silicone oil. Because of the intrinsic hydrophobic property of the
silicone sheet, the LIEGS presents the superhydrophobicity. (d)
Along the perpendicular direction to the grooves, the unstretched
LIEGS demonstrates a smaller WCA (∼73.2°) than the stretched one
(∼121.1°) because of the reduced oil film thickness and the droplet
will pin on the stretched LIEGS with a WSA (∼90°) while easily
sliding on the unstretched one (∼7.8°). (e) Along the parallel
direction to the grooves, the droplet will slide easily (∼8.5°) on both
the stretched and unstretched states of LIEGS.
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hysteresis (CAH) of the droplet. The CAH resistance can be
calculated as the equation FCAH = γ × L × (cos θR − cos θA),

34

where γ, L, θA, and θR represent the surface tension of water
(∼72 mN/m), droplet’s characteristic length, and the
advancing and receding contact angle of the water droplet. It
is worth noting that the CAH resistance FCAH mainly
determines whether or not the droplet can slide on LIEGS,
which is closely related to the thickness of the oil film (Figure
2b−g). When the lubricant oil is not applied to the structure,
the profile of the grooves is easily visible (Figure 2b) and the
droplet is in a superhydrophobic state (Figure 2e). After
infusing the silicone oil into the groove, the water droplet
contacts the flat silicone oil film (Figure 2c) on the unstretched
LIEGS and the sample shows a low CAH with a smaller WCA
(Figure 2f). The oil film thickness (H) is the distance between
the upper side of the film and the top of the grooves. If we
apply a strain by stretching the LIEGS, the lubricant liquid will
sink into the grooved structure13 and the oil film becomes thin
and uneven (Figure 2d), so that the droplet shows a high CAH
on the uneven film with a bigger WCA (Figure 2g). Moreover,
we study the quantitative relationship between the advancing/
receding angle and the strain. As the strain increases from 0 to
60%, the advancing contact angle increases from 85° to 121°
whereas the receding contact angle stays almost the same
(Figure 2h). Furthermore, we calculated the equation cos θR −
cos θA, which corresponds to the resistance of FCAH according
to the equation of CAH resistance,34 and the results indicate
that FCAH increases with the increase of strain (Figure 2i) so
that the droplet motion could be tuned by stretching the
LIEGS.
We also conduct a series of oil thickness measurements and

water droplet sliding experiments on the LIEGS with different
experimental parameters, such as spin-coating speed, droplet
volume, and laser power (Figure 3). It is apparent in Figure 3a
that the silicone oil thickness decreases gradually from 13 to 4
μm with the increase of the strain from 0 to 60% when the
LIEGS is stretched, which contributes to the variation of the
droplet CAH resistance. Then, we studied the relationship

between the WSA and the strain under different parameters
(Figure 3b−d). Figure 3b shows the effect of rotation speed on
the WSA at different strains. It can be seen that under the same
strain the WSA increases with the increase of the rotation
speed, which is mainly caused by the variation of the oil
thickness. In general, the rotation speed directly determines
the lubricant thickness. As the rotation speed increases, the oil
thickness would decrease (Figure 3e) so that the droplet
contacts with the uneven oil film caused by the grooved
structure and shows a high CAH and sliding angle.
Additionally, the WSA is influenced by the droplet volume.
It can be seen that an 8 μL droplet can easily slide with a
sliding angle of ∼23° whereas the sliding angle increases to
∼90° for a 2 μL droplet because of the smaller component of
gravity (Figure 3c). Besides, laser power can affect the droplet
sliding angle by changing the width and depth of the grooves.
When the laser power increases from 150 to 300 mW, the
consequent depth of the grooved structure increases from 20
to 82 μm, which can store more lubricant oil so that the
droplet can slide easily under the same strain (Figure 3d,f).
On the basis of the above experiment results, mechanical

responsive capture/release of droplets can be achieved (Figure
4 and Movie S1). As a proof-of-concept, a 5 μL water drop was
deposited on the LIEGS in the case of zero tensile strain, and
its sliding behavior was recorded as the LIEGS was stretched to
different degrees. Figure 4a shows that a water drop that was
deposited on the LIEGS with a tilted angle of ∼17°. The
droplet easily slides once it touches the surface because the

Figure 2. Force analysis and mechanism of dynamic control over
droplet motions. (a) Schematics showing the force analysis of the
droplet deposited on the LIEGS. (b−d) Optical images of LIEGS side
profiles before lubrication, before stretching, and after stretching. (e−
g) Three types of droplet wetting state by changing the silicone oil
thickness. (h) Relationship between advancing/receding contact angle
and the tensile strain. (i) Relationship between the equation cos θR −
cos θA and the tensile strain.

Figure 3. Measurements of oil thickness and sliding angles for
different parameters including strain, spin-coating rotation speed, test
droplet volume, and laser power, and the groove width and depth
analysis under different laser power. (a) Relationship between the
silicone oil thickness and the tensile strain. (b−d) Influence of spin-
coating rotation speed, test droplet volume, and laser power on the
relationship between the sliding angle and the tensile strain. (e)
Measurements of oil film thickness for different spin-coating rotation
speeds. (f) Influence of laser power on the groove width and depth.
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sliding angle was smaller than the tilted angle. When the strain
was applied to the LIEGS, the water droplet slowed and
stopped in a very short time because the droplet assumed a
higher sliding angle state, and sliding angle was larger than the
tilted angle. When there was a continual strain on the LIEGS,
the droplet was pinned on it (Figure 4b). When the strain was
removed, the droplet was released and slid off again on the
surface because of the regressive sliding angle (Figure 4c). On
the basis of the above results, mechanical responsive control of
water droplet sliding on LIEGS was achieved by alternating the
stretching strain. Moreover, the different states including
pinned and sliding could be reversibly switched a large number
of times by applying different tensile strains (Figure 4d). The
LIEGS has been proved to own the dynamic in situ tuning
property for different types of liquid including juice, milk, and
salt solution (Figure 4e).

■ CONCLUSIONS
In conclusion, we fabricate a kind of grooved liquid-infused
silicone sheet surface to achieve reversible switching between
isotropic and anisotropic sliding by one-direction mechanical
stretching. Through the mechanical stretching and releasing of
the LIEGS, droplet motion is reversible switching between the
sliding and pinned states along the perpendicular direction to
the grooves, whereas the droplet keeps sliding along the
parallel direction to the grooves. The mechanism of reversible
switching mainly contributes to the decrease of the lubricant
film thickness during the stretching process, and the droplet
contacts with the uneven oil film which shows a high hysteresis
resistance to the liquid. It is worth noting that the oil thickness
is influenced by many experimental parameters, such as

rotation speed and laser power. On the basis of the above
manipulation strategy, mechanical responsive capture/release
of droplets can be achieved. We have realized the real-time
flexible control of droplet sliding/pinned on the strain-
changing LIEGS, which could be reversibly switched a large
number of times with great fatigue stability and it is also
suitable for different kinds of liquids, such as milk, juice, and
salt solution. This work may provide a new strategy to fabricate
adaptive and dynamic SLIPS for broad potential applications.

■ EXPERIMENTAL DETAILS
Materials. Silicone sheets (200 μm thick) were purchased from

Chun Shi New Material Tech. Co., Ltd., Nanjing, China. The
lubricant silicone oil was used for the preparation of the LIEGS, and
the LIEGS was obtained by spin-coating the prepared silicone oil at a
certain speed (ranged from 600 to 1800 rpm) for 3 min. The distilled
water was served as contact angle measurement materials.

Femtosecond Laser Fabrication. The grooved structure on the
sample was achieved by line-by-line laser ablation. The laser beam
(104 fs, 1 kHz, central wavelength 800 nm) from a regenerative
amplified Ti:Sapphire femtosecond laser system (Solstice Ace, Spectra
Physics, USA) was employed for processing. The laser beam was
guided onto the silicone sheet by a scanning galvanometer (Sunny
Technology, China), which was equipped with a 100 mm telecentric
fθ lens to make the beam focus and scan along the x/y coordinate
direction. The scanning period between two adjacent lines is 150 μm,
the laser processed area is 8 × 15 mm, and scanning speed is 4 mm/s.
The laser power ranges from 150 to 300 mW.

Characterization. The micro/nanostructure ablated by laser was
characterized by using a tungsten filament scanning electron
microscope (JSM-6700F, Japan). The contact angles of the water
droplet (ranged from 2 to 10 μL) in air were measured using a
CA100C contact-angle system (Innuo, China) with the sessile drop
method. The average values were obtained by measuring three drops
at different locations on the same sample. All the contact angle
measurements were conducted at 10% humidity and 20 °C
temperature.

In Situ Manipulation of Liquid Motions on the LIEGS. The
as-prepared samples were put on the tilted platform. We use the
microliter injector to add different liquids (water, juice, and milk) on
the LIEGS. A home-made film stretcher was used to add different
strains to the LIEGS, which results in the slipping/pinned under the
unstretched/stretched state, respectively. The detailed tuning process
of droplet motion was recorded by a digital camera.
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