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Abstract
Femtosecond laser direct writing (FLDW) has been widely employed in controllable
manufacturing of biomimetic micro/nanostructures due to its specific advantages including high
precision, simplicity, and compatibility for diverse materials in comparison with other methods
(e.g. ion etching, sol-gel process, chemical vapor deposition, template method, and
self-assembly). These biomimetic micro/nanostructured surfaces are of significant interest for
academic and industrial research due to their wide range of potential applications, including
self-cleaning surfaces, oil-water separation, and fog collection. This review presents the
inherent relationship between natural organisms, fabrication methods, micro/nanostructures and
their potential applications. Thereafter, we throw a list of current fabrication strategies so as to
highlight the advantages of FLDW in manufacturing bioinspired microstructured surfaces.
Subsequently, we summarize a variety of typical bioinspired designs (e.g. lotus leaf, pitcher
plant, rice leaf, butterfly wings, etc) for diverse multifunctional micro/nanostructures through
extreme femtosecond laser processing technology. Based on the principle of interfacial
chemistry and geometrical optics, we discuss the potential applications of these functional
micro/nanostructures and assess the underlying challenges and opportunities in the extreme
fabrication of bioinspired micro/nanostructures by FLDW. This review concludes with a follow
up and an outlook of femtosecond laser processing in biomimetic domains.
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1. Introduction

Nature often guides the practical applications of modern
industrial extreme manufacturing [1–5]. As a results, bioin-
spired design from natural organisms, that exhibit extreme
functional characteristics arising from their unique surface
micro/nanostructures, have been implemented in radars [6],
submarines [7], and airplanes [8–12], to obtain useful func-
tionalities such as anti-wear [13], anti-corrosion [14], and self-
cleaning [15–21]. One of the most attractive phenomena is
the self-cleaning ability of lotus leaf, which as the poem by
Dunyi Zhou says ‘She grows in mud, yet never contaminates
with it. She floats on waving water, yet never dances with
it’. The second paradigm is Namib desert beetles can sur-
vive in extremely dry and foggy deserts, which has implica-
tions for reducing fog in airports, collecting water for irriga-
tion and collecting potable water in foggy, arid environments.
These extreme biological characteristics possess unique sur-
face topography and proper intrinsic wettability. The fluff and
tiny-nanoscaled waxy particles endow the surface of the lotus
leaf with superhydrophobic characteristics and self-cleaning
capability. The combination of the superhydrophilic texture
and superhydrophobic grooves on the surface of Namib desert
beetles render their capability of sucking water vapor from
moist air. As abundant water droplets accumulate in the supe-
rhydrophilic regions, they roll along the bow back and fall into
the beetle’s mouth.

In order to obtain these functional micro/nanostructured
surfaces, researchers have developed diverse micro/
nanoprocessing methods, including reactive ion etching, sol-
gel processing, chemical vapor deposition, electrochemical
processing, template methods, self-assembly etc [22–30].
Unfortunately, these methods suffer from limitations. For
instance, the processing steps are too complicated to con-
trol precisely; the processing platforms are limited to the
specific materials; the processing environment is harsh;
the fabrication process is always accompanied by second-
ary pollution and so is not environment-friendly. There is
still an urgent need for new strategies of preparing bio-
mimetic multifunctional surface micro/nanostructures effi-
ciently, accurately, and easily. As a novel method of pre-
paring micro/nanostructures, femtosecond laser direct writ-
ing (FLDW) technology has attracted great attention due to
its ultrahigh processing accuracy, wide application for vari-
ous materials, simplicity, and rapidity. Many reviews have
reported the tremendous achievements of the FLDW techno-
logy towards advancing the field of micro/nanofabrication
[31–33]. However, essential characteristics, such as the
classification, formation mechanism, and design paradigm,
of specific extreme micro/nanostructures have not been
systematically summarized. A deep understanding of

these essential characteristics is vitally important to the
fabrication of biomimetic surface morphology through
FLDW.

In this review, we present the correlation among nat-
ural organisms, fabrication methods, micro/nanostructures
and potential applications. Then we compare the features
of existing fabrication strategies and highlight the advant-
ages of FLDW in preparing bioinspired microstructures. Sub-
sequently, we present the bioinspired designs (e.g. lotus
leaf, pitcher plant, rice leaf, butterfly wings, etc) and
extreme femtosecond laser processing of diverse multi-
functional micro/nanostructures (e.g. microhole, micropil-
lar, hierarchical structure, nanoripple, self-growing structure).
Based on the principle of interfacial chemistry and geo-
metrical optics, we summarize the applications of various
micro/nanostructures prepared by FLDW in the fields of struc-
tural color, self-cleaning, oil-water separation, fog harvest-
ing, underwater bubble collection, droplet directional trans-
port, and droplet/optical switch. Finally, we conclude with a
summary of the challenges and opportunities associated with
fabricating bioinspired micro/nanostructures by FLDW and an
analysis of the future of femtosecond laser processing in bio-
mimetic field.

2. Correlations among nature organisms,
fabrication methods, micro/nanostructures
and potential applications

Natural organisms have developed micro/nanostructures
with tremendous attractive capabilities which induces
abundant intriguing inspirations for human to utilize
micro/nanofabrication methods to assimilate and/or emu-
late to develop diverse potential applications (figure 1). For
instance, self-cleaning surfaces were inspired by the natural
lotus leaf, which emerges from the mud unstained [34]. The
compound-eye camera was inspired by the dragonfly’s com-
pound eyes, which enable wide angle reconnaissance [35].
Structural coloration was inspired by butterfly wings, which
produce brilliant iridescent colors when illuminated by the
moonlight [36]. Dry tape was inspired by the gecko foot,
which can grip even the slipperiest surfaces, giving rise to the
lizards exceptional climbing abilities [37]. These biological
functions have provided great impetus for scientists to develop
similarly functional materials.

The hierarchical structure at the micro/nanoscale is recog-
nized as the key element in determining the reproduction
of these unique functions [38–43]. For example, covering
multiscale micro/nanostructures in a thin layer of hydrophobic
wax prevents pollutants from adhering to surfaces similar to
the self-cleaning lotus leaf. Dust particles could be easily
removed when liquid droplets roll over a lotus leaf, which is
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Figure 1. Correlations among nature organisms (bats [57], lotus leaf
[58], water strider [59], rose petal [60], pitcher plant [61], butterfly
wings [62] and desert beetle [63]), fabrication methods (lithography
[64], reactive ion etching [65], electrochemical deposition [66],
plasma processing [67] and femtosecond laser direct writing [68]),
micro/nanostructures [69–73] and potential applications (anti-icing
[74], oil-water separation [75], energy conversion [76], bubble
manipulation [77], structural color [78] and anti-fogging [79]).

defined as the self-cleaning effect. In addition, the superhy-
drophobic leaf surface with multiscale micro/nanostructures
exhibits a high adhesion force to the air bubbles in liquid
(superaerophilicity), which could be used for the collection of
desirable energy-rich gases from the deep sea [44].

Moreover, various functionalities, including oil-water sep-
aration and self-driving fog collection, are closely related to
the superwetting performance of the hierarchically structured
surface [45]. One of the most important typical surfaces is the
single-layered Janus membrane with gradient conical micro-
hole arrays, which shows different degrees of wettability on
either side of the membrane. Droplets spontaneously pass
through the conical microholes depending on the wetting driv-
ing force and the Laplace pressure difference. The bioinspired
Janus membrane holds great potential for applications in self-
driving fog collection [46].

However, these unique micro/nanostructures present
unique challenges for current micro/nanoprocessing methods,
including lithography, reactive ion etching, electro-chemical
deposition, plasma processing, etc. These traditional methods
consist of multistep technology processes that pose severe
environmental risks. FLDW technology is a new processing
strategy in the field of micro/nanomanufacturing. The femto-
second laser has been utilized to fabricate microstructures
on the surface of various materials (e.g. metal [47], polymer
[48], etc.). It provides precise control over the size of micro-
structures by adjusting certain crucial parameters, such as

laser power, scanning speed, and scanning period. Through
the advanced micro/nanomanufacturing technology, we can
replicate the unique biomimetic micro/nanostructures to har-
vest a variety of functions similar to those observed in natural
organisms, including anti-icing [49], oil-water separation [50],
energy conversion [51], bubble manipulation [52], structural
color [53, 54], and anti-fogging [55, 56].

3. Interaction between femtosecond laser and solid
substrate

As one of the most important means for humans to
explore the microworld, micro/nanofabrication technology
has extremely vital applications in fabricating microelec-
tronics [83], microoptics [84], microfluidics [85], and other
leading-edge fields [86–89]. Currently, widely adaptive tech-
nologies consist of planar lithography [90], electron beam
etching [91], focused ion beam etching [92], chemical poly-
merization [93], and self-assembly [94] (figure 2). However,
these micro/nanofabrication technologies have limited prac-
tical applications. For example, lithography is usually used
in plane processing. The efficiency of non-plane processing
will be significantly reduced (figure 2(a)). The rate and effi-
ciency of reactive ion etching are relatively low. It is difficult
to prepare multi-component films by electro chemical depos-
ition, and the growth rate of crystal nuclei cannot be precisely
controlled (figure 2(b)). Plasma treatments suffer from poor
precision control, resulting in structures with rough surfaces
(figure 2(c)). Electron beam etching and focused ion beam
etching are expensive methods of micro/nanostructure fabric-
ation. It should be noted that the intrinsic shortcomings of
these traditional techniques limit their potential application in
diverse fields.

In recent years, femtosecond laser direct micro/nanowriting
technology has been widely adopted in the field of
micro/nanomanufacturing (figure 2(d)) [95]. Due to its
extremely short pulse width, a femtosecond laser can achieve
extremely high peak power at the focal spot, even if the pulse
energy is only in the order of microjoule or millijoule. Under
strong light field conditions, the electric field intensity of the
laser can distort the coulomb potential of most neutral atoms,
causing a nonlinear interaction between light and matter,
such as multi-photon absorption or tunneling ionization [96].
Compared with other micro/nanowriting technology that util-
izes nanosecond pulsed light or continuous laser [97], FLDW
offers several unique advantages: (1) high processing accuracy
due to its relatively low thermal impact in the processing area;
(2) high peak intensity, which makes FLDW processing suit-
able for almost any; (3) high processing resolution, especially
for two photon polymerization because of the femtosecond
nonlinear absorption effect; (4) the femtosecond laser has a
long wavelength and excellent penetrability, making it suit-
able for true 3D fabrication. The mechanism of femtosecond
laser induced controllable multiscale micro/nanostructures
is related to three effects: laser ablation effect [98],
laser-induced effect [99], and debris self-deposition
[100].
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Figure 2. Diverse micro/nanofabrication methods. (a) Lithography and etching [80]. (b) Electrochemical deposition [81]. (c) Plasma
processing [82]. (d) Femtosecond laser processing technology [114–116]. (a) [111] (2010) With permission of Springer. (b) Reprinted from
[112], Copyright (2014), with permission from Elsevier. (c) Reproduced from [113]. © IOP Publishing Ltd. All rights reserved. (d)
Reprinted with permission from [114]. Copyright (2015) American Chemical Society.

(1) Under the laser irradiation, the target material absorbs
the laser energy and transforms into a liquid or gas. Themolten
liquid is expelled from the zone of action by recoil. The steam
escapes directly from the focal point. During the process, some
nanoparticles form around micropits, which result from the
combined effects of laser shock compression and debris depos-
ition [101]. Due to the short pulse width in the process of
femtosecond laser induction, the vapor and plasma phases are
rapidly generated with negligible conduction, and no liquid
phase presents [102]. It is worth noting that the laser abla-
tion effect contributes to the fabrication of various microscale
structures (e.g. microhole, micropillar, and microgroove). At
the same time, the nanoscale structures (e.g. nanoparticle) are
also generated around the microscale structures due to the
debris self-deposition effect [103].

(2) Another fabrication mechanism of surface structure
is mainly derived from the laser-induced effect. The theor-
ies for the generation of periodic fringe structure induced by
ultrashort pulse laser include self-organization [104], plasma
excitation [105], and second harmonic generation [106]. Elec-
tromagnetic field energy of the incident plan wave does not
distribute evenly on thin, rough surfaces (note that the surface
thickness is much smaller than the wavelength of the incid-
ent light). The electromagnetic field energy distribution [107]
determines the formation of periodic self-organizing fringe
[107]. Periodic ripples are among the important induced fringe
structures, and are widely employed in the manufacturing of
special wettability surfaces [108] and metal coloring [109].

(3) Under the condition of liquid-assisted (source solution
[110], ethanol [111], water [112] and so on) processing, femto-
second laser processing could produce unique structures dif-
ferent from those produced in an open-air environment. It
should be noted that the fabrication process of liquid-assisted
FLDW is more complex, consisting of five general phases,
including laser-induced plasma effect of liquid, enhanced
heat conduction, increased shock wave, intensified acoustic
pressure, and explosive vaporization. The femtosecond laser
may produce a superheated substance [113] around the tar-
get sample, which brings the surrounding liquid to a super-
critical state [107]. The resulting pressure wave interacts with
the liquid layer on the target surface, altering its morphology.
The forming mechanism of mico/nanostructures fabricated by
liquid-assisted FLDW is mainly related to the ultrahigh tem-
perature of plasma ions excited at the liquid/solid interface,
and the capillary wave during the cooling process. Addition-
ally, the ablation process generates smaller bubbles around the
target sample. The interaction between the liquid, bubble, and
solid surface plays a critical role in the fabrication of specific
micro/nanostructures.

In short, FLDW is efficient strategy for the fabrication of
multi-functional micro/nanostructures. FLDW involves vari-
ous interactions between the laser pulse and materials (e.g.
laser ablation effect, laser-induced effect, and debris self-
deposition), which have broad applications in diverse fields,
such as surface modification and fabrication of intelligent
micro/nano devices.
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Figure 3. Microhole arrayed structure. (a) Femtosecond laser micro/nanoprocessing system [117]. (b) The relationship between the laser
pulse number and the diameter of the microhole under different laser power [117]. (c) The top and bottom SEM images of microhole [118].
(d) The analysis of element composition on the top and bottom of the film after selective laser ablation process. The inside topography of
microhole [119]. (a), (b) Reproduced from [117] with permission of The Royal Society of Chemistry. (c), (d) Reprinted from [119], with
permission of AIP Publishing.

4. Typical micro/nanostructures by FLDW

4.1. Microhole arrayed structure

Themicrohole arrayed structure is a typicalmicro/nanostructure
fabricated by femtosecond laser drilling metal or polymer
films (figure 3). The inner walls of the microholes drilled by
femtosecond laser are smoother and cleaner than those drilled
by picosecond or nanosecond laser. For example, Wu et al
presented a type of regular microhole arrayed aluminum foil
ablated by femtosecond laser for efficient oil/water separation
(figure 3(a)) [117]. Wu et al precisely controlled the diameter
of the microholes (2.4 µm–32 µm) by adjusting the laser
power and pulse number (figure 3(b)). Chen et al designed
and fabricated a microhole arrayed Janus PDMS surface based
on femtosecond laser drilling to achieve the unidirectional
self-transport of underwater bubbles. The microhole diameter
could also be precisely controlled by adjusting the laser pulse
numbers [115]. Zhang et al proposed a simple, functional
device for oil/water separation utilizing an aluminum film (oil
barrel), covered in an array of tapered microholes induced by

femtosecond laser ablation [119]. Recently, Yan et al fabric-
ated a Janus aluminum film with tapered microholes using
femtosecond laser ablation and selective laser removal of flu-
orinated areas [118] (figure 3(c)). Yan et al reported no fluorine
signal on the bottom surface of the film, which indicates that
selective femtosecond laser scanning completely removed the
fluorination material on the bottom surface (figure 3(d)).

4.2. Micropillar arrayed structure

The micropillar arrayed structure is fabricated by orthogon-
ally decussate line laser scanning on metal or polymeric
surfaces. The surface micropillar arrays can be utilized to
construct superwetting interfacial materials (figure 4). For
instance, taking hints from the underwater superaerophobicity
of fish scales, Yong et al designed and fabricated multiscale
structures on silicon by femtosecond laser [120]. It can be
seen from the SEM images that the period and the size
of the micromountains was 10 µm and 7–8 µm, respect-
ively. Additionally, there were abundant nanoparticles on
each micromountain (figure 4(a)). Chen et al manufactured a

5



Int. J. Extrem. Manuf. 2 (2020) 032002 Topical Review

(a) (b)

(c)

30
29
28
27
26
25
24
23
22
21 0 10 20 30

Position (µm)

S
ag

 h
ei

g
h

t 
(µ

m
)

40 50 60

(d)

Si 1 cm

1 cm

Without paraffin

With paraffin

100 µm

200 µm 2 µm 25 µm 10 µm

25 µm 10 µm

100 µm

100 µm100 µm

52
26
640

480

320

160

X
640

480

320

160

0

0
51.9

Figure 4. Micropillar arrayed structure. (a) SEM images of silicon surface ablated by femtosecond laser [120]. (b) Digital images of zinc
membrane before and after being irradiated by the femtosecond laser [121]. (c) The morphology of the as-prepared microlense arrays [122].
(d) SEM images of the morphology transformation between the upright micropillar arrays and tilted micropillar arrays [123]. (a) Reprinted
with permission from [120]. Copyright (2017) American Chemical Society. (b) Reprinted with permission from [121]. Copyright (2019)
American Chemical Society. (c) [122] John Wiley & Sons. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Reprinted
from [123], Copyright (2020), with permission from Elsevier.

hydrophobic micropillar arrayed zinc oxide film (ZOF) using
femtosecond laser ablation to realize the in-situ reversible
tuning of diverse liquids between the sliding and pinning
state under ultra-low voltage [121]. It is worth noting that
the micropillar arrayed ZOF was covered with paraffin under
the effect of capillary force (figure 4(b)). This is the key to
achieving dynamic control of droplet movement on the sur-
face, which is confirmed by the sectional and top view of
ZOF (figure 4(c)). Moreover, Chen et al reported a simple
strategy for fabricating superhydrophobic PDMS microlens
arrays by wet etching and femtosecond laser direct writing.
The fabricated samples exhibited outstanding imaging features
and self-cleaning functions (figure 4(c)) [122]. Their research
team recently utilized femtosecond laser to prepare hierarch-
ical micropillar arrays (diameter ~ 20 µm, height ~ 45 µm,
space ~ 40 µm) on shape-memory polymers, which imparted
the surface with superhydrophobicty. The micropillar array
could realize the reversible tuning between the tilted and
upright state under the heating condition (figure 4(d)).

4.3. Micro/nano hierarchical structure

Micro/nano hierarchical structure is a type of composite struc-
ture that contains both microscale and nanoscale structural
components, which plays a key role in the preparation of
extreme wetting surfaces (e.g. superhydrophobicty, superhy-
drophilicity). In general, a single microstructure or nanostruc-
ture may exhibit hydrophobic characteristics, but its rolling
angle is relatively high on account of the high adhesion. Only
the surfaces with composite micro/nanostructures (e.g. rice
leaf and lotus leaf) can impart a lower adhesion force between
droplets and the solid surface, achieving a lower rolling angle
(<10

◦
) and a higher contact angle of droplets (>150

◦
). Lu

et al reported a simple and effective method of fabricating
hierarchical microgrooved structures on PDMS films by using
an energy-tuning laser scanning strategy (figure 5(a)). Firstly,
the macrogrooves with anisotropic feature were achieved
by laser ablation with large power. The superhydrophobic
micro/nanostructures were fabricated under a low laser power.
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Figure 5. Hierarchical micro/nanostructure. (a) Hierarchical rice leaf surfaces with anisotropic wetting properties and the preparation of the
rice leaf-based bioinspired surfaces [124]. (b) Schematic of the femtosecond laser preparation steps for multi-level microstructures. (c)
Topological images of microgroove arrays. (d) Topological images of step-like structures in microgroove arrayed surface [125]. (a)
Reproduced from [124] with permission of The Royal Society of Chemistry. (b)–(d) [125] John Wiley & Sons. © 2018 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.

The as-prepared surface had an obvious anisotropic sliding
ability and the difference of sliding angle along the perpen-
dicular and parallel direction was about 6◦, which was sim-
ilar to the real rice leaf [124]. Chen et al reported a versat-
ile, bioinspired superhydrophobic surface with tridirectional
anisotropic sliding ability (figure 5(b)). They used select-
ive laser processing to constructed the microgroove arrayed
PDMS surface, which showed bidirectional anisotropic prop-
erties. Additionally, the bidirectional anisotropic ability could
be tuned by the height and period of the microgrooves (figures
5(c) and (d) [125].

4.4. Self-growing structure

Though bioinspired architectures (e.g. micropillars, micro-
holes, and microcones) have been widely explored, most of
these structures are based thematerial-reducing process during
laser ablation. These structures have no shape transformation

in a bulk material in response to external stimuli. Recently,
Zhang et al introduced a ‘self-growth’ strategy to achieve a
localized reconfigurable microstructure transformation on a
pre-stretched shape-memory polymeric material through pre-
cisely controlling the femtosecond laser ablation (figure 6).
These results suggest that it is possible to prepare micropillar
structures in one step through the interaction of femtosecond
laser with heat-shrinkable polymers (figure 6(a)). Addition-
ally, the as-prepared upright micropillars bend when the laser
focus scans another semicircular path (figure 6(b)), which
is defined as the asymmetric laser scanning strategy. It is
worth noting that the interactions between the laser pulse and
the polystyrene materials (e.g. ablation and heating) play an
important role in the formation of bent and upright micropil-
lars. On the basis of the mechanical model and analysis
(figure 6(c)), the growth mechanism of micropillars consists
of four periods as the repeat circles increase. Additionally,
various ordered patterns could be achieved by utilizing the
bent micropillar as a unit. These intelligent architectures will
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Figure 6. Localized self-growth of reconfigurable architectures [126]. (a) Schematic illustrations of femtosecond laser fabricating SMP
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process of laser-induced polymer self-growing. Scale bars: 500 µm. (d) Preparation of controllable bent micropillars. (a)–(d) [126] John
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find wide applications in industries that rely on information
encryption/decryption and particle trapping, such as micro-
structure printing anti-counterfeiting, and ultrasensitive detec-
tion [126].

4.5. Induced nanoripple arrayed structure

The nanoripple arrayed structure is a type of special nano-
structure composed of nanometer-wide stripes arranged in a
periodic, continuous manner. Nanoripple arrayed structures
frequently appear in nature. For example, butterfly wings
often contain striped structures arranged periodically. The
direct interaction between these structures and incident light
endows the butterfly its brilliant colors. It is worth noting that
FLDW can induce periodic fringes on the surface of vari-
ous materials (e. g. metal, semiconductors, and insulators).
Studies have revealed that the direction of the periodic stripe
is perpendicular to that of the laser polarization. The theor-

ies for the generation of periodic fringe structures induced
by an ultrashort pulse laser include self-organization, plasma
excitation, second harmonic generation, etc. In 2009, Sakabe
et al divided femtosecond laser induced stripe structure form-
ation into three steps [128]: (1) the femtosecond laser induces
plasma waves on the metal surface; (2) the first few pulses of
the femtosecond laser forms periodic streaks on the surface
and the subsequent process involves a single pulse; (3) the
electric field is enhanced at the fringe structure, formed by the
subsequent pulse, and then melts the metal surface deepening
the periodic structure. As mentioned above, the induced nan-
oripple arrayed structures are used in the fabrication of spe-
cial wettability materials and structural color. For instance,
Li et al used a femtosecond laser micro/nanoprocessing sys-
tem to achieve structural color applications on stainless steel
(figure 7(a)) [127]. The modified surface structure morpho-
logy on the stainless steel was detected by a scanning elec-
tron microscope (figure 7(b)), which revealed that the ripples,
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with different periods, could be achieved by various laser
wavelengths under suitable laser power and processing speed
ranges.

4.6. Other micro/nanostructures induced by liquid-assisted
FLDW

Recently, many research groups have focused on liquid-
assisted FLDW,which can fabricate distinctmicro/nanostructures
compared to those created through FLDW in air [129–139]. Li
et al conducted research on the preparation of various control-
lable micro/nanostructures by liquid-assisted femtosecond
laser ablation [114, 129, 130] (figure 8). They employed
different liquids (e.g. ethanol, sucrose, and water) to obtain
microcones and micromolar silicon arrays (figures 8(a) and
(b)) with tunable wettability. They studied the relationship
between the structural parameters (figures 8(c) and (d)), sur-
face roughness (figure 8(e)), and pulse energy to precisely
control the microstructure. The formation mechanism of these
mico/nanostructures by liquid-assisted FLDW related to the
ultrahigh temperature of plasma ions excited at the liquid/solid
interface and the capillary wave during the cooling process. It
should be noticed that there would generate more and smal-
ler bubbles in water-assisted ablation than that in sucrose

solution-assisted ablation. This is because of differences in
the viscosity, density, and boiling points of these two liquids,
which have enormous effects on the microstructure morpho-
logy of silicon.

5. Multi-functional applications
of micro/nanostructures

As the fast development of bionics and femtosecond laser
extreme processing technology, a variety of powerful inter-
face materials and devices that combine with these extreme
micro/nanostructures have been designed and manufactured.
These interfacial materials and devices can be adapted to meet
diverse functional applications, including oil-water separation,
fog harvesting, anti-icing, structural color, droplet and bubble
manipulation, and anti-reflection.

5.1. Oil-water separation

Oil-water separation is one of the most crucial technological
processes in the oil industry. Due to frequent oil spill acci-
dents, the problems of resource waste and environmental pol-
lution are becoming more and more serious (figure 9). Oil spill
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accidents severely contaminate and endanger marine ecosys-
tems. In recent years, oil spills have resulted in the deaths
of a large number of natural organisms [140]. Researchers
have proposed several solutions to solve this issue, includ-
ing air-float separation [141], gravity separation [142], and
centrifugal separation [143]. Oil-water separation materials
prepared by femtosecond laser extreme manufacturing meth-
ods also show promising results. Wu et al reported a Janus
oil barrel based on the tapered microhole arrayed aluminum
film to achieve spontaneous collection of spilled oil with an
ultrahigh flux (45 000 Lm−2 h−1) for further oil/water sep-
aration [119]. Firstly, femtosecond laser drilling was utilized
to prepare the double-faced superhydrophilic aluminummem-
brane and the diameters of the microholes were precisely regu-
lated by adjusting the laser power and pulse numbers. After the
fluorination modification and the selective laser removal of the
modification area, the Janus barrel was harvested. Hu et al also
reported a novel aluminum film covered by large-area regu-
lar micropores [117], which performed continuous high-speed
oil-water separation and oil collection. Yin et al proposed a
versatile strategy to prepare stainless steel mesh with peri-
odic nanoripples induced by femtosecond laser, which possess
superhydrophilic and underwater superoleophobic properties.

The interfacial materials showed robust stability after abrasion
tests and longevity tests [144].

5.2. Fog harvesting

Fog harvesting based on bioinspiredmicro/nanostructured sur-
faces with specific wetting ability has attracted attention as
possible solution to the water shortage plaguing modern soci-
ety (figure 10). One of the most important bioinspired phe-
nomena is the hump-like surface microstructure inspired by
the Namib dessert beetle’s back, which possess excellent fog
collection capabilities. Ren et al designed and fabricated a
Janus (hydrophobic/hydrophilic) aluminum film covered by
gradient conical micropore arrays for efficient fog collection
[116]. It is worth noting that the collection on the Janus film
is nearly twice as efficient compared with the original super-
hydrophilic film, which shows a great potential application in
constructing a water collection device to alleviate the freshwa-
ter crisis. Inspired by the beetle’s elytra, Kostal et al utilized
a simple three-step preparation strategy to increase the col-
lection efficiency of glasses. It was demonstrated that high-
contrast wetting surfaces collected the most fog and increased
the fog-collection efficiency by ~ 60% compared to the pristine
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Pyres glass [145]. Yin et al reported a novel high-efficiency
strategy to prepare a Janus microstructured membrane covered
with nanoparticles on copper foam by femtosecond laser
microfabrication. The fabricated janus membrane was able to
collect water in foggy conditions with a maximum collecting
efficiency of ~ 3.7 g (cm h)−1 [146]. Recently, they also pro-
posed a hybrid hydrophilic-superhydrophobic surface on the
copper mesh which contained micro/nanopatterns induced by
femtosecond laser ablation [147]. The Janus film based on cop-
per mesh could significantly enhance the fog collection effi-
ciency, which could be controlled by adjusting the inclination
angle, mesh number, and surface microstructure. In addition, it
was noted that the as-prepared surface exhibited outstanding
anti-corrosion ability after immersing it in NaOH, HCl, and
NaCl solutions, which may promote its application in water
collection.

5.3. Anti-icing

Icing is a common natural phenomenon. Under certain con-
ditions, the attachment and accumulation of snow and ice
poses significant economic losses and potential safety haz-
ards. Thick ice on power lines threatens the safe operation of

power, railway, and communication networks [148]. Current
ice removal methods are summarized as mechanical method
[149] and melting strategy [150]. But these methods are util-
izing complex structural design and require large amounts
of additional energy consumption. Superhydrophobic sur-
faces have received extensive attention, showing great poten-
tial in self-cleaning. The superhydrophobic materials have
demonstrated outstanding ice resistance (figure 11). Zhong et
al studied the underlying mechanism in fabricating surface
micro/nanostructures by ultrafast laser [151]. Furthermore, the
influences of surface micro/nanostructures on the adhesion,
anisotropy, stability and anti-icing performance of superhy-
drophobic surfaces were systematically studied. There are four
kinds of typical hydrophilic nanostructures, whose morpho-
logy were mainly decided by the laser scanning parameters,
including the scanning interval and pattern. When the hydro-
philic metal surfaces were placed in air, they spontaneously
turned into highly hydrophobic surfaces due to the adsorption
of organicmatters onto themetal oxide. It can greatly delay the
icing process of surface water droplets under frost-free condi-
tion. Under temperatures between−10 ~-6 ◦C, water droplets
on superhydrophobic surfaces maintain their liquid state for
12 h without icing.
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5.4. Structural color

The structural color induced by periodic textures on solid
substrates has received great attention in both academic and
industrial fields. In most situations, structural color textures
are considered a kind of grating structure originating from the
diffraction of light (figure 12), which is a simple and vital
strategy to change the optical performance of metal surfaces.
The surface texturing by femtosecond laser is a versatile and
simple way to generate structural colors. For instance, Li and
Hu et al proposed a strategy to display various colors induced
by surface microstructures through simultaneously adjusting
the incident light angle and ripple orientation [127]. In addi-
tion, different patterns composed of ripples could be precisely
designed and controlled by adjusting the incident white light
angle and rotating the sample angle. Recently, Wu et al repor-
ted a microstructured metal surface utilizing a focused laser
interference lithography fabrication strategy, which exhibited

various structural colors. The water droplet showed an aniso-
tropic wetting ability on the surface. It is worth noting that the
fabrication strategy of generating structural color is suitable
for multiple materials, such as copper, titanium, iron, etc. Li
et al proposed controllable parameters (e.g. laser wavelength,
spatial period and incline angle) to generate different colors,
which could apply to a large range of applications in the art
design and laser color marking [152].

5.5. Droplet and bubble manipulation

Droplet and underwater bubble manipulation are vital for
both industrial and academic researches due to their prac-
tical applications in water treatment, sensors, and microre-
action technology. There are several methods (e.g. electric,
magnetic, light and thermal actuation) of manipulating the
droplet/bubble motion. For instance, electro wetting actuates
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Figure 11. Anti-icing [151]. (a) Ice formation procedure on different Cu sample surfaces. (b) Shape of the droplet on different sampled
surfaces before and after freezing. (c) Water contact angle of the superhydrophobic samples fabricated by femtosecond laser versus
temperature. (d) Ice information delay time versus samples under different temperatures. (a)–(d) Reproduced with permission from
[151].

the droplet motion through the variation of contact angles
[153]. The magnetic actuation requires mixing magnetic nan-
oparticles into the droplets so the droplets respond to external
variations in magnetic fields and achieve directional move-
ment [154]. The local temperature of the sample can be sig-
nificantly altered by thermal stimulus to form a surface ten-
sion gradient to actuate the droplet [155]. Moreover, inspired
by natural organisms, many functional surfaces with tailored
geography and biomimetic microstructures have been artifi-
cially realized (figure 13). For instance, Chen et al prepared
a Fe3O4 doped slippery PDMS surface with light response
by femtosecond laser crossed ablation [156]. The surface
achieved the directional transport of underwater bubbles by
loading/discharging a near-infrared light stimulus. The driving
mechanism was related to the wettability gradient force due to
the high temperature difference. Li et al designed an intelligent
droplet motion device composed of paraffin wax, micropillar-
arrayed zinc oxide film (ZOF) and a flexible silver nanowire
heater [121]. The hydrophobic ZOF was fabricated by femto-
second laser ablation. Zhang et al designed and prepared an
elastic-grooved slippery PDMS surface based on femtosecond

laser microfabrication to realize the in-situ reversible tuning of
droplet sliding movement by mechanical stretch, which was
related to the variation of contact angle hysteresis [157]. Jiao
prepared a large-area oil infused slippery surface for bubble
self-transport and highly efficient gas capture, which was also
controlled by the competing forces: resistance (drag force
and contact angle hysteresis) and buoyancy [158]. It is worth
nothing that differently shaped slippery tracks were prepared
to achieve the precise manipulation of underwater bubbles,
which may have potential applications in the fields of bubble
merging and detachment. Recently, Yong et al also repor-
ted a porous network of microstructures on different poly-
mer materials [159]. Through the surface modification and oil-
infused process, the porous slippery surface showed an out-
standing lyophobic ability, which greatly inhibited C6 glioma
cells.

5.6. Anti-reflection

Functional surfaces and interfaces that reflect minimum elec-
tromagnetic waves over a wide spectrum range have vital
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significance for military aircraft equipment. Nevertheless,
there are challenges to achieving effective anti-reflection
on solid substrates due to the optical impedance mismatch.
Most anti-reflection candidate coatings are unable to bridge
gaps in the refractive index, which result in the effective-
ness of traditional destructive interference coatings and gradi-
ent refractive index membranes. Recently, the developed
strategies for anti-reflection coatings are limited to non-
metal micro/nanostructured materials (figure 14). Zhong et
al developed a simple strategy for fabricating hybrid anti-
reflection micro/nanostructures on different metal surfaces by
a femtosecond laser direct writing method [160], which was
modified by controlling the laser pulse injection and flexible
modifications. Guo et al fabricated a versatile large-area grat-
ing structure superimposed by finer nanostructures on a sil-
icon surface, which exhibited an anti-reflection effect in the
wavelength range from 250 to 2500 nm [161]. These periodic
structures induced by femtosecond laser can restrain both the
total hemispherical and specular polarized reflectance, which
has many advantages, including no environmental contamina-
tion and the ability to precisely control the size of the micro-
structure. Vorobyev et al designed the microgroove arrays on

silicon substrates covered with nanostructures, which exhib-
ited a significant reflectance reduction [162]. Further invest-
igation suggests that the anti-reflection range can be expan-
ded to the mid-infrared wavelength. For instance, Cheng et al
designed and fabricated a series of silicon surfaces with tex-
tured anti-reflection membranes by femtosecond laser fabrica-
tion, which demonstrated a 30% increase of the transmittance
response [163].

6. Outlook and conclusion

The fabrication of bioinspired multiscale structures with
diverse functions by FLDW has obtained great achievements
due to its superior processing characteristics. However, there
are still great challenges to face in the FLDW: (1) the interac-
tionmechanism between femtosecond laser and variousmetal-
lic and non-metallic materials has not been thoroughly studied,
and the interaction between some new materials (e.g. shape
memory polymer and alloy) and femtosecond laser to produce
new structures requires further investigation; (2) femtosecond
laser fabrication has some limitations, such as high processing
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cost and long processing time, especially in the preparation
of large area surfaces for practical applications. Strategies
can be provided such as parallel processing of femtosecond
laser by programming and high-power laser and high-speed
scanning processing; (3) over current research, it is difficult
for a single processing method to meet the requirement of
achieving the desirable structure and performance, so it is
necessary to develop a variety of methods to co-produce bio-
mimetic micro/nanostructures. How to integrate femtosecond

laser fabrication technology with other processing methods
for achieving the highest efficiency and lowest cost is still
an important research question; (4) how to choose the cor-
rect structural surface to maximize the application efficiency
of the material, such as straight hole arrays or cone hole
arrays for oil-water separation is worth studying. Despite the
great advances in the technological content, the application
of nature-inspired functional surfaces fabricated by FLDW
in industrial engineering is still difficult to realize. One of

15



Int. J. Extrem. Manuf. 2 (2020) 032002 Topical Review

100

80

(a)

(c) (d) 80

T 
(%

)

60

40
4 6 8

Wavelength (µm)
10 12

100 mW 250 µm/s
200 mW 250 µm/s
250 mW 250 µm/s
300 mW 250 µm/s
theoretical value
for one surface of
silicon

Si

0 µm
0 µm

100.0
 µm

0

250.0

250.0

500.0

500.0

706.6

(b)

575 nm

Si plate (25×25 mm)

Structured area

300 nm

i ii

iii iv

60

40
30
25
20
15
10

0
400 800

Ultrafast laser

Metal
Single stru.

Hybrid stru.

1200
Wavelength (nm)

R
ef

le
ct

an
ce

 (%
)

1600 2000

5

Figure 14. Anti-reflection. (a) Versatile method for dual-scale-controlled micro/nanostructured metallic surface with ultralow reflectance
[160]. (b) SEMs of periodic surface structures on silicon induced by femtosecond laser and optical images showing various colors at
different detection angles. (c) The three-dimensional optical photograph of the microgrooves on silicon surface [161]. (d) Transmittance of
microstructured Si for different conditions [163]. (a) Reprinted with permission from [160]. Copyright (2017) American Chemical Society.
(b) Reproduced with permission from [161]. © 2011 Optical Society of America. (c) Reproduced with permissino from [163]. © Chinese
Optics Letters.

the key reasons is that the unique ability of these functional
materials works well in the laboratory conditions, but could
fail in massive industrial production. Therefore, addressing
these challenges will advance our fundamental understanding
of the mechanisms underlying biological functional surfaces
and inform effective methods of producing bioinspired mater-
ial designs and fabrications for industrial applications.

In this review, we highlighted the utilization of FLDW
to achieve the extreme manufacturing of various bioin-
spired micro/nanostructures, such as microhole, micropillar,
hierarchical structure, self-growth structure, and nanoripple.
We also summarized crucial applications for laser-ablated
micro/nanostructured surfaces in the fields of oil-water sep-
aration, anti-icing, fog harvesting, and structural color. It
is noteworthy that these nature-inspired functional surfaces
have penetrated nearly every aspect of traditional mechan-
ical systems and daily life. However, there is a great step to
realize the practical usability of these functional surfaces in
massive industrial production by the laser ablated strategy.
Through the tireless efforts of broadening the research field

of femtosecond laser and deepening the research direction,
we believe the femtosecond laser biomimetic structure will be
widely-applicable for practical usability in the near future.
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