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ABSTRACT: Natural evolution has endowed diverse species with
distinct geometric micro/nanostructures exhibiting admirable
functions. Examples include anisotropic microgrooves/micro-
stripes on the rice leaf surface for passive liquid directional rolling,
and motile microcilia widely existed in mammals’ body for active
matter transportation through in situ oscillation. Till now, bionic
studies have been extensively performed by imitating a single
specific biologic functional system. However, bionic fabrication of
devices integrating multispecies architectures is rarely reported,
which may sparkle more fascinating functionalities beyond natural
findings. Here, a cross-species design strategy is adopted by
combining the anisotropic wettability of the rice leaf surface and
the directional transportation characteristics of motile cilia. High-aspect-ratio magnetically responsive microcolumn array (HAR-
MRMA) is prepared for active droplet transportation. It is found that just like the motile microcilia, the unidirectional waves are
formed by the real-time reconstruction of the microcolumn array under the moving magnetic field, enabling droplet (1−6 μL) to
transport along the predetermined anisotropic orbit. Meanwhile, on-demand droplet horizontal transportation on the inclined plane
can be realized by the rice leaf-like anisotropic surface, showcasing active nongravity-driven droplet transportation capability of the
HAR-MRMA. The directional lossless transportation of droplet holds great potential in the fields of microfluidics, chemical
microreaction, and intelligent droplet control system.
KEYWORDS: high-aspect ratio, magnetically responsive, unidirectional waves, anisotropic properties, directional transportation

1. INTRODUCTION

To survive in the washy environment, rice leaves have evolved
the ability to transport droplets directionally and efficiently
with the aid of anisotropic surface microgrooves.1,2 Recently,
the excellent anisotropic wettability of rice leaves has been
attracting considerable interests.3−6 For example, inspired by
the microgroove of rice leaf, directional oil sliding surfaces
were realized with hierarchical anisotropic groove micro-
structures.7 Groove-like microstructures were fabricated on
cooper surfaces to study the influence of anisotropic groove
microstructures on the wettability and sliding behavior of water
droplet.8 Synthetic rice leaf-like wavy surfaces with tunable
anisotropic wettability were prepared to investigate the effects
of the hierarchical nanostructure surface roughness on the
anisotropic wettability and water repellency.9 A smart super-
hydrophobic surface with shape memory materials was
realized, on which the wetting performances can be switched
reversibly between the superhydrophobic isotropic and
anisotropic states.10

In addition, motile cilia widely exists in animals11,12 and can
realize the directional transportation of matter in an active
manner by oscillating in a certain direction.13,14 Inspired by

motile cilia, researchers have designed dynamic functional
surface structures, which can respond to external stimuli to
achieve important functions.15−18 For example, based on the
airway cilium-like magnetically responsive conical arrays,
nonmagnetic polystyrene microspheres can be transported
directionally and continuously by the bending and recovering
of conical arrays.19 Droplets can be transported on the
superhydrophobic magnetic microcilia array prepared by
combining the template and superhydrophobic nanosilica-n-
hexane modification, and the rolling/pinning states can be
switched on the inclined surface by the magnetic field with the
aid of gravity.20 A functional surface with anisotropic slippery
switchable microstructures was prepared, on which droplets
can preferentially slip and spread against the direction of cilia
tilt under gravity.21
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It can be found that the current studies on the anisotropy of
rice leaf surface are basically focused on passive droplet
transportation,22−26 which always depends on gravity to make
the droplets roll away.27,28 Furthermore, although droplet
manipulation on the inclined plane has been achieved under
gravity,20,21,29−31 the gravity-free droplet horizontal trans-
portation on the inclined plane has not been studied. Besides,
it is of great significance to realize directional active
transportation of droplet on the cilia-like surface. Therefore,
it is highly desirable to realize directional active droplet
transportation combining the biological structure character-
istics of the rice leaf surface and motile cilia.
Herein, a cross-species bionic design strategy is adopted for

constructing active anisotropic droplet transportation surfaces,
which combines the anisotropic wettability of rice leaf surface
and the directional transportation characteristics of motile cilia.
The surface consists of high-aspect ratio magnetically
responsive microcolumn array (HAR-MRMA) prepared by
femtosecond laser direct writing and soft transfer technol-
ogy,32,33 so that controlled directional and nondestructive
transportation of droplets is driven by external magnetic field.
The mechanism is that droplet can be directionally propelled
by the unidirectional waves, which are formed by the real-time
reconstruction of the microcolumn array under the moving
magnetic field.34,35 In addition, because of the rice leaf-like
anisotropy of the HAR-MRMA, the droplet can move
horizontally on the inclined surface, which is difficult to
realize by other cilia-like structures.19−21,29,30 This cross-
species-combined bionic HAR-MRMA paves a new way for the
study of droplet manipulation and directional lossless trans-
portation.21,22,36

2. RESULTS AND DISCUSSION

2.1. Principle and Preparation Process of HAR-MRMA.
The principle and preparation process of HAR-MRMA are
shown in Figure 1a. High-aspect ratio microhole array is
fabricated on the shape memory polystyrene (SMP) polymer
surface using the thermal shrinkage property (Figures S1 and
S2, Supporting Information).37 First, the microhole array is
fabricated on the SMP by femtosecond laser direct drilling
(Figure 1a, I).38,39 In order to introduce anisotropy into the
microhole array, the distances between adjacent microholes in
the transverse and longitudinal directions are designed to be
different. Also, then, the SMP sheet with microhole array is
heated in an oven at 130 °C for 10 min for complete shrinkage
(Figure S3−S5, Supporting Information). After shrinkage, the
thickness of the polystyrene film increases from initial ∼150
μm to final ∼1014 μm (Figure S6, Supporting Information),
and the length and width are contracted to ∼40% of the
original size (Figure 1a, II). As a result, the microhole array
with a high-aspect ratio can be simply prepared. Then, the
polydimethylsiloxane (PDMS) doped with carbonyl iron
powder is cast into the shrunk polystyrene film to obtain the
microcolumn structures (transfer process) (Figure 1a, III,
Figure S7, Supporting Information). Here, double-sided tape is
stuck to one side of the shrunk polystyrene sheet to prevent
the PDMS from leaking.
In order to ensure a larger bending degree of the

microcolumn under the magnetic field, a piece of neo-
dymium−iron−boron (NdFeB) magnet (40 × 40 × 20 mm)
is placed under the sample about 8 s, so that the iron particles
in the microcolumns are arranged into chains.40 After curing in
an oven at 130 °C for 20 min (Figure 1a, IV), the double-sided
tape is removed carefully to expose the polystyrene mold.

Figure 1. Fabrication of the HAR-MRMA and surface properties before and after laser modification. (a) Schematic illustration of the fabrication
procedure of HAR-MRMA. (b−g) Scanning electron microscopy images of HAR-MRMA before and after laser modification. Contact angle and
rolling angle (h) before laser modification and (i) after laser modification. (j) Quantitative relationship between the contact angle and rolling angle
of the HAR-MRMA after laser modification with different laser powers. The droplet volume used here is 4 μL.
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Subsequently, the superhydrophobic microcolumn array with
high adhesion to droplet is stripped out of the mold (Figure 1a,
V). Finally, after femtosecond laser modification, the achieved
HAR-MRMA surface is changed to be superhydrophobic with
low adhesion (Figure 1a, VI).
As shown in Figure 1b−g, before laser scanning, the central

part of microcolumns is relatively smoother than the edge
region because of the contact between the top of microcolumn
and double-sided tape. After laser scanning, it can be seen that
the top of microcolumns is evenly covered by rough
micronanostructures while the side walls of the microcolumns
are deposited with a few micronanoparticles (Figure S8,
Supporting Information). These micronanostructures are
generated by laser ablation with vertically crossed scanning
and the deposition of broken particles during ablation. In other
words, micronanostructures with different roughnesses are
induced after femtosecond laser modification (Figure S9,
Supporting Information). It should be noted that after laser
modification, the crystal structure of each component of HAR-
MRMA is not changed, and there is no visible chemical
composition change on the surface (Figure S7, Supporting
Information). As shown in Figure 1h, the initial contact angle
(CA) of untreated HAR-MRMA is about 135°. When the
sample is rotated to be vertical, the droplet cannot fall down,
demonstrating high surface adhesion. Figure 1i shows the
wetting properties of HAR-MRMA after femtosecond laser
modification. The CA is about 146.09°, and the rolling angle
(RA) is significantly reduced to 2.96°.41 Based on the Cassie
equation,42 the surface adhesion is reduced with the decrease

of contact area of solid/liquid interface. The rough surface
makes the HAR-MRMA surface become superhydrophobic
low adhesion. The relationships between laser power and CA/
RA values are shown in Figure 1j. It can be clearly seen that
with the increase of laser power, the CA decreases and the RA
increases. The reason is that more hydrophilic iron powders
are exposed to the surface of structure with the increase of laser
power.

2.2. Magnetic Response Properties of HAR-MRMA. In
order to study the magnetic response properties of HAR-
MRMA, two connected square NdFeB permanent magnets are
placed at the bottom of the sample (Figure 2a). It can be
observed that the real-time reconstruction of microcolumn
array on the HAR-MRMA surface can form a unidirectional
wave under magnetic driving force, and the unidirectional wave
is located above the junction between the two magnets. When
the magnets move from right to left, the unidirectional wave
formed by the microcolumns also moves from right to left.
Correspondingly, unidirectional waves move from left to right
with the right moving of the magnets under the action of the
magnetic field. Figure 2b shows optical images of the
microcolumns responding to the magnetic field (Video S1,
Supporting Information). There is good reversibility and
repeatability of the bending behavior of HAR-MRMA under
magnetic field (Video S2, Supporting Information).
Considering the close relationship between the bending

behavior of the HAR-MRMA and the droplet transportation
capacity,43 the maximum bending degree of the microcolumns
is studied under different magnetic flux densities (B). The

Figure 2. Magnetically responsive bending properties of HAR-MRMA. (a) Three-dimensional models of unidirectional waves of HAR-MRMA
under magnetic field. (b) Optical image of the response of microcolumns to the magnetic field. (c) Quantitative relationship between the magnetic
flux density and the bending angle of the microcolumns with different diameters and the constant iron powder concentrations (C = 40%). (d)
Quantitative relationship between the magnetic flux density and the bending angle of the microcolumns with the different iron powder
concentrations (C) C = 20%, C = 40%, C = 60%, and C = 80%, respectively. The diameter of the microcolumns is d = 160 μm. h remains to be
1014 μm.
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magnitude of magnetic flux density was controlled by changing
the vertical distance between the microcolumn array and
magnet (Figure S10, Supporting Information). To avoid the
interaction between microcolumns, a single row of micro-
columns is selected in the sample. As shown in Figure 2c, the
diameter of the microcolumns is changed from 60 to 100 μm,
160, and 200 μm. When the iron powder concentrations (C)
are 40%, the bending angle increases with the magnetic flux
density. When the magnetic flux density is constant, the
bending angle increases with the decrease of the microcolumn
diameter (d). As shown in Figure 2d, with the same
microcolumn diameter (d = 160 μm) and iron powder
concentrations, the bending angle increases with the magnetic
flux density (Figure S11, Supporting Information, d = 120
μm). Furthermore, the bending angle increases with the iron
powder concentrations (C = 20%, C = 40%, C = 60%, and C =
80%, respectively) with the same microcolumn diameter (160
μm) and magnetic flux density.
2.3. Mechanism for Droplet Transportation on the

HAR-MRMA. Figure 3a shows droplet transportation on the
HAR-MRMA before femtosecond laser modification, and it
indicates that the unidirectional wave can form under the
magnetic response. However, the unidirectional wave does not
exert enough force to drive the droplet because of the strong
adhesion between the droplet and the top of microcolumns. In
contrast, the droplet on the femtosecond laser-modified HAR-
MRMA surface can be transported unidirectionally by the
unidirectional wave because of the low adhesion force (Figure
3b, Video S3, Supporting Information).
It is necessary to analyze the transportation mechanism of

droplet on the low-adhesion superhydrophobic HAR-MRMA
surface. As shown in Figure 3c−e, when the magnetic flux
density is zero, the microcolumns remain upright, and the

droplet is in equilibrium. When two joined magnets (The N
and S poles are distributed up and down.) are placed under the
microcolumn array, the microcolumn always bend toward the
junction of two magnets. It should be noted that the
microcolumn, which locates exactly above the junction,
remains upright. With the magnet movement from left to
right, the bending direction of microcolumns is changed from
left to right, resulting in the real-time reconstruction of the
microcolumn array to form the continuous unidirectional
waves. Thus, the equilibrium state of the droplet is broken, and
the droplet is transported.
As shown in Figure 3f, the droplet transportation process

can be divided into three steps. When the magnetic flux density
is zero (Figure 3f step I), the gravity (G) of the droplet is equal
to the surface supporting force (FN). When applying two
external magnets (step II), the motion-less state of droplet can
be described by eqs 1 and 2 as follows

f G sin1 α= (1)

F G cosN α= (2)

where α is the angle between gravity and normal force FN, f1 is
the frictional force that prevents the droplet from rolling to the
left, G sin α is the component force of gravity along the
direction of frictional force, and G cos α is the component
force of gravity along the direction of normal force. The third
state is shown in Figure 3f, III. With the movement of magnets
from left to right, the droplet is in an inequilibrium state, which
can be described by the following eq 3

F F fcosD N 2β= > (3)

where FD is the driving force from the bent microcolumn, β is
the angle between normal force FN and driving force FD, and f 2

Figure 3. Analysis of droplet transportation mechanism on the HAR-MRMA surface. Optical images of droplet transportation on the HAR-MRMA
(a) before laser modification and (b) after laser modification. (c) Three-dimensional model illustration of droplet transportation on the HAR-
MRMA after laser modification. (d) Side-view models of droplet transportation on the HAR-MRMA surface. (e) Schematic illustration of
formation mechanism of unidirectional waves on the HAR-MRMA surface. (f) Analysis of the mechanism of droplet transportation on the HAR-
MRMA surface.
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is the frictional force between the droplet and microcolumn
surface. Under the resulting net forces, the droplet will move
right on the HAR-MRMA surface.
2.4. Anisotropic Properties of Droplets on the HAR-

MRMA Surface. In order to study the influence of the
anisotropy on droplet transportation performance, the
isotropic HAR-MRMA surface is prepared as a control
group. By comparing the effects of isotropic and anisotropic
HAR-MRMA surfaces on the droplet transportation, it has
been proved that the droplet can be transported directionally
and stably on the anisotropic HAR-MRMA surface rather than
the isotropic HAR-MRMA surface (Video S4, Supporting
Information), indicating that anisotropic properties of HAR-
MRMA play an essential role in the droplet transportation.
The RAs of droplet along the X axis (RAx) and Y axis (RAy)

are shown in Figure 4a. The interval ratio p is defined as the
ratio between the microcolumn intervals in two orthogonal
directions: x/y (x and y are the distance between the
microcolumns along the X axis and the Y axis). As shown in
Figure 4b,c, with the same droplet volume, RAx and RAy
increase with p1 (y = 0.4 mm, x changes to be 0.4, 0.6, 0.8, 1,
1.2, 1.4, and 1.6 mm). When the droplet volume is 1 μL, the
RA of droplet cannot be measured with p1 = 3.0, 3.5 and 4.0.
The reason is that the droplet gets into the groove of the
microcolumns. Furthermore, 2 μL of droplet can be stuck in
the groove when p1 = 3.5 and 4.0. As shown in Figure 4d, the
difference between RAx and RAy increases with p1. It means
that with the increase of p1, the transportation of droplet is

more stable. However, if p1 is too large, the small droplet
cannot be transported. Therefore, p1 is an important factor for
droplet transportation.
Similarly, the relationship between p2 (x/y, x = 1 mm) and

droplet RA is studied. When y is changed from 0.25 to 0.286,
0.332, 0.4, 0.5, 0.668, and 1 mm, the quantitative relationship
between p2 and RAx/RAy is shown in Figure 4e,f. With the
same droplet volume, RAx remains almost unchanged with p2
(x = 1 mm). Furthermore, RAy decreases as p2 increases. As
one can see in Figure 4g, the difference between RAx and RAy
increases with p2 under the same droplet volume, and the
droplet transportation is more stable. When the droplet
volume (V) > 2 μL and p2 ≥ 2, the difference between RAx and
RAy is almost constant. Therefore, p2 is chosen to be 2 so as to
achieve stable transportation of small droplet.

2.5. Stability of Droplet Transportation on the HAR-
MRMA Surface. The anisotropic design of HAR-MRMA
surface is one of the key factors for droplet stable trans-
portation. Stable transportation means that the droplet can
move along a specified orbit or stop on demand under the
driving of the unidirectional waves. Correspondingly, unstable
transportation means that the droplet may be bounced off or
cannot roll, or the droplet cannot be transported along the
predesigned orbit.
Figure 5a shows the droplet transportation performance with

varying microcolumn diameter (d) and droplet volume (V).
When 60 μm ≤ d ≤ 100 μm, the droplet cannot be transported
stably, which is mainly caused by the small microcolumn

Figure 4. Anisotropic properties of droplets on the HAR-MRMA surface. (a) Illustration of RAs of droplet along the X axis (RAx) and Y axis (RAy)
on the HAR-MRMA surface. Quantitative relationships between (b) p1 and RAx, (c) p1 and RAy, (d) p1 and RA difference (RAx − RAy), (e) p2 and
RAx, (f) p2 and RAy, and (g) p2 and RA difference (RAx − RAy).
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diameter resulting in large bending angle and uneven bending
degree. When d = 120 μm, only the droplet with smaller
volumes of 1 and 2 μL can be transported. When d = 140 μm,
the droplet with a volume of 1−4 μL can be transported stably.
When d = 160, 180, and 200 μm, droplets (1−6 μL) can be
transported stably.
Figure 5b shows the dependence of droplet transportation

performance on p1 and droplet volume. When p1 = 1, the
droplet (1−6 μL) cannot be transported stably on HAR-
MRMA surface because of the isotropic surface. When p1 = 1.5,
only droplet with a volume of 1 μL can be transported. When
p1 = 2.0 and 2.5, the droplet (1−6 μL) can be transported
stably because of anisotropic design (Video S5, Supporting
Information). When p1 ≥ 3, small droplets cannot be
transported because they get stuck in the groove. Similarly,
as shown in Figure 5c, when p2 = 1, the droplet (1−6 μL)
cannot be transported either. When p2 = 1.5 and p2 = 2, large
droplet (3−6 μL) can be transported. When p2 = 2.5, p2 = 3.0,

p2 = 3.5, and p2 = 4.0, the droplet (1−6 μL) can all be
transported. The results indicate that the distance between the
microcolumns along the X axis (x) has a significant influence
on the droplet transportation while the distance between the
microcolumns along the Y axis (y) has no obvious influence on
droplet transportation.
Subsequently, the droplet transportation properties on the

horizontal HAR-MRMA surface are demonstrated. Figure 5d
shows the reciprocation of droplet along the straight orbit
propelled by the unidirectional waves. Two droplets moving in
parallel are shown in Figure 5e. Two droplets are placed onto
the HAR-MRMA surface and then propelled parallelly from
left to right. The merging transportation of two droplets is
shown in Figure 5f. The red droplet is first transported to right,
and then, the blue droplet is added to the starting position to
propel toward the red one and merge with it. Figure 5g shows
that droplet can be transported stably along the circular arc
orbit under magnetic field (Video S6, Supporting Informa-

Figure 5. Droplet transportation stability on the HAR-MRMA surface. (a−c) Dependence of transportation performance on (a) the diameter of
microcolumns and the volume of droplet, (b) p1 and droplet volume, and (c) p2 and droplet volume. (d−g) Diversified transportation modes of
droplets on the HAR-MRMA surface. (d) Reciprocation of droplet along the straight orbit under magnetic field. (e) Two droplets moving in
parallel. (f) Merging transportation of droplets and (g) directional stable transportation of droplet on circular arc orbit. The droplet volume is 3 μL.
The spacing between microcolumns was x = 0.8 mm and y = 0.4 mm, and the magnetic flux density (B) is 200 ± 10 mT.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://dx.doi.org/10.1021/acsami.0c10034
ACS Appl. Mater. Interfaces 2020, 12, 42264−42273

42269

http://pubs.acs.org/doi/suppl/10.1021/acsami.0c10034/suppl_file/am0c10034_si_006.avi
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c10034/suppl_file/am0c10034_si_006.avi
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c10034/suppl_file/am0c10034_si_007.avi
https://pubs.acs.org/doi/10.1021/acsami.0c10034?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c10034?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c10034?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c10034?fig=fig5&ref=pdf
www.acsami.org?ref=pdf
https://dx.doi.org/10.1021/acsami.0c10034?ref=pdf


tion). In addition, the directional stable transportation of
droplet with different temperatures and pH is also realized on
the HAR-MRMA surface (Figures S12−S14, Supporting
Information).
The ingenious design of structure combining the anisotropic

characteristics of microgrooves and the active oscillation of
motile microcilia can not only realize the directional and
lossless stable transportation of droplet on the horizontal plane
but also meet the horizontal transportation requirements on
the inclined plane. As shown in Figure 6, owing to the
anisotropic design of the HAR-MRMA, the droplet can be
transported on the inclined plane in the horizontal direction.
Figure 6a shows the three-dimensional (3D) model diagram of
droplet transportation on the inclined plane, and the droplet is
driven along the RAy direction. Figure 6b,c shows that the
droplet (2 μL) can be transported stably along the orbit on the
inclined plane when the inclination angle is α = 5° and α =
10°. When α = 15° (Figure 6d), the droplet falls off after
moving for 4 s. All these results have proved that the
anisotropic HAR-MRMA structure makes the horizontal
transportation of droplet possible on the inclined plane
because of different energy barriers along two directions
(Video S7, Supporting Information).

3. CONCLUSIONS

In conclusion, inspired by the anisotropic wettability of rice
leaf surface and the directional transportation characteristics of
motile cilia, a kind of anisotropic droplet transportation surface
HAR-MRMA is fabricated to achieve active directional and
nondestructive transportation of droplets. The HAR-MRMA
surface inherits the advantages of anisotropic transportation
properties from rice leaf and active directional characteristics
from motile microcilia. Because of the anisotropic design of the
HAR-MRMA, multifunctional droplet transportation is
realized including reciprocating motion in straight lines along
the orbit, parallel movement, and merging of two droplets and
directional stable transportation of droplet on circular arc orbit.
Moreover, the HAR-MRMA surface can enable the droplet

horizontal transportation on the inclined plane, which is
challenging for other cilia-like structures. The directional
lossless transportation of droplet holds great potential in the
fields of microfluidic control, chemical microreaction, and
intelligent droplet control.

4. EXPERIMENTAL SECTION
4.1. Fabrication of HAR-MRMA. High-aspect ratio microhole

array can be first prepared on the shape memory polymer (Hebei Pod
network technology co., LTD surface) by femtosecond laser direct
writing. Afterward, the SMP sheet with microhole array is heated for
complete shrinkage. Then, the liquid PDMS and hardening agent
(Sylgard 184, Dow Corning) in a weight ratio of 10:1 doped with
carbonyl iron powder (diameter of 3−5 μm, purity ≥99.9%, C = 40%,
RuiTeng Alloy Material co., LTD) are cast into the shrinkage
polystyrene film (transfer process) and degassed. Also, then, after
curing in an oven (130 °C, 20 min), the microcolumn array was
peeled off from the mold. Finally, the HAR-MRMA surface was
obtained after femtosecond laser modification.

4.2. Instrument and Characterization. Microholes are
processed on a SMP polymer by femtosecond laser direct writing
technology. The laser beam (104 fs, 1 kHz, 800 nm) is from a
regenerative-amplified Ti: sapphire femtosecond laser system (Legend
Elite-1K-HE, Coherent), and the power of laser is 200 mw, and the
scanning speed is 30 mm/s. When the laser is applied to modify the
surface. the spacing between lines is 15 μm. Scanning electronic
microscopy images were taken by JSM-6700F, JEOL, Japan. The CAs
of the droplet were measured using a contact angle system (CA100C,
Innuo, China).

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsami.0c10034.

Thermal shrinkage property of shape memory poly-
styrene (SMP) polymer, statistical tables of microhole
diameter before and after shrinkage and shrinkage ratio
of five samples, scanning electron microscopy (SEM)
images of microhole array of the third sample before and
after shrinkage, SEM images of microhole array of the

Figure 6. Droplet horizontal transportation on the anisotropic inclined plane. (a) Three-dimensional models of droplet horizontal transportation
on the inclined plane. Droplet horizontal transportation on the inclined plane with the angle (α) (b) α = 5°, (c) α = 10°, and (d) α = 15°. (b,c)
Droplet is transported stably and (d) the droplet falls off after moving for 4 s. The spacing between the microcolumns is x = 0.8 mm and y = 0.4
mm, and the magnetic flux density (B) is 200 ± 10 mT.
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fourth sample before and after shrinkage, SEM images of
microhole array of the fifth sample before and after
shrinkage, SEM images of the thickness of shape
memory polystyrene (SMP) polymer before and after
shrinkage, X-ray diffraction (XRD) and Fourier Trans-
form Infrared spectroscopy (FT-IR) characterization of
PDMS, iron powder, and mixture of PDMS and iron
powder before and after laser modification, SEM images
with high resolution before and after laser modification,
atomic force microscopy (AFM) images of HAR-
MRMA surface before and after laser modification,
measurement of the magnetic flux density magnitude,
quantitative relationship between the magnetic flux
density and the bending angle of the microcolumns
with the different iron powder concentrations (C),
directional stable transportation of droplet with different
temperatures (T), directional stable transportation of
acidic solution (HCI) with different pH values, and
directional stable transportation of alkaline solution
(NaOH) with different pH values (PDF)
Unidirectional waves formed under magnetic driving
force (AVI)
Reversibility and circularity of bending behavior of
HAR-MRMA at the magnetic field (AVI)
Droplet transportation on the HAR-MRMA before and
after femtosecond laser modification (AVI)
Droplet transportation on the isotropic HAR-MRMA
surface (AVI)
Droplet transportation of different volumes (AVI)
Diversified transportation modes of droplets on the
HAR-MRMA surface (AVI)
Droplet horizontal transportation on the anisotropic
inclined plane (AVI)
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(14) Keißner, A.; Brücker, C. Directional fluid transport along
artificial ciliary surfaces with base-layer actuation of counter-rotating
orbital beating patterns. Soft Matter 2012, 8, 5342−5349.
(15) Toonder, J. M. J. d.; Onck, P. R. Microfluidic manipulation with
artificial/bioinspired cilia. Trends Biotechnol. 2013, 31, 85−91.
(16) Fahrni, F.; Prins, M. W. J.; van Ijzendoorn, L. J. Micro-fluidic
actuation using magnetic artificial cilia. Lab Chip 2009, 9, 3413−3421.
(17) Khaderi, S. N.; Craus, C. B.; Hussong, J.; Schorr, N.; Belardi, J.;
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