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Digital PCR enabled high-sensitivity and quantitative measurements of rare biological variants. A new digital
droplet-enabled PCR technology was introduced in this paper, which partitioned genetic targets into a planar
nanoliter droplet array by using a microfluidic impact printer (MIP) with a disposable microfluidic chip. The
accuracy of this MIP-enabled PCR technology was verified by detecting a series of concentration gradients of

GAPDH gene across spanning four orders of magnitude (from 0.464 copies/uL to 464 copies/pL). Furthermore,
this technology was applied to detect the expressions of p53 gene in colon cancer tissues and adjacent non-
tumorous tissues, from which the copies of the nucleic acids could be absolute-quantitatively determined. The
outcomes were consistent with the results of using the conventional real-time PCR, demonstrating a great po-
tential of the MIP-enabled digital PCR in detecting gene expression in clinical samples.

1. Introduction

Detection of differential gene expression in tumors and normal tis-
sues is one of the most widely used strategies to discover and under-
stand cancer molecular pathways, as well as to reveal genes that prove
useful for diagnosis and prognosis [1,2]. Polymerase chain reaction
(PCR) has become a golden standard in the genetic detection since its
emergence in 1983, due to its remarkable ability of amplifying single-
molecule's concentration by replicating a large amount of target genes
in a short time [3]. Among them, traditional PCR techniques, such as
agarose gel electrophoresis and real-time PCR, only perform qualitative
and relative detections [4,5]. While the developing digital PCR tech-
nique provides an absolute gene quantification of single molecule level,
without requirement of comparison with standard reference [6,7].
Using digital PCR, the target molecules are extremely diluted and dis-
persed into different reaction chambers for single molecule amplifica-
tion, thus the copies of the target gene can be calculated directly by
counting the positive reaction chambers [8,9], which is independent of
the amplification efficiency [10,11]. Due to its unique absolute quan-
titative ability, high accuracy and sensitivity, digital PCR has been used
more and more widely in biological researches, such as detection of rare

mutations [ [12-14]], copy number variation [ [15-17]] and next-
generation sequencing [18].

In 1999, Vogelstein et al. implemented the earliest digital PCR
system in multi-well plates [6]. To address the inherent defects of less
reaction units, sample reagents waste and human manipulating errors,
microfluidic technology was developed to conduct DNA amplification
in droplets due to its unique ability of dispersing small volume droplets
efficiently and automatically [ [19-22]]. A number of droplet digital
PCR platforms based on microfluidics have been established and com-
mercialized for single cell analysis [23,24], early cancer diagnosis
[25,26] and prenatal diagnosis [27,28]. For example, Fluidigm co. and
Thermo Fisher Scientific co. used integrated microfluidic chips and
specially designed silicon array chips to physically isolate liquid into
independent reaction chambers, respectively; Bio-rad co. and Rain-
dance Technologies co. used droplet microfluidic technology to produce
large number of uniform water-in-oil microemulsions, where tens of
thousands of parallel reactions simultaneously happen [ [29-31]], and
developed a droplet readout system for next digital counting. However,
these commercialized digital PCR systems usually require a dedicated
fabrication for complex chips, or need specialized external control of
microvalves and pumps for discrete droplets generation, as well as
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expert testing equipment for signal reading. They have high stability
but less flexibility to adjust the volumes and gradients of the droplets,
and the high equipment cost is also a problem for individual re-
searchers.

Besides, more explorations of developing stable, flexible and low-
cost digital PCR system are being performed by scientists [14,32]. The
crucial factor of the digital PCR technology is how to generate in-
dependent microreactors efficiently. Ismagilov group developed a
simple, low-cost slip chip for digital PCR [33,34]. The fluidic path was
broken by slipping of the precision-designed two plates that removed
the overlap between wells and generated multiple reaction compart-
ments simultaneously. Lin group [35] and He group [36] demonstrated
similar flexible online digital polymerase chain reaction (dPCR) systems
that generated droplets in crimped capillaries for thermal cycling and
integrated a special design photodetection device for positive droplet
counting. Fang group developed a novel approach which combined
robotic liquid handling and specially processed hydrophilic micropillars
for digital PCR [37]. It realizes a multi-volume digital PCR method by
changing the liquid flow rate in the capillary and the moving speed of
the chip/stage, which can achieve a wider dynamic detection range
when the number of droplets is the same. Similarly, Du group reported
a cross-interface emulsification technique, which can generate size-
tunable droplets at the air-oil interface by changing the capillary flow
rate and vibrating frequency for digital LAMP (loop mediated iso-
thermal amplification) [38]. Table 1 summarizes the characteristics of
different digital PCR methods.

In this work, we first proposed a droplet digital PCR technology
based on microfluidic impact printing (MIP-ddPCR). A wide range of
nanoliter droplet array was dispensed on a uniform hydrophobic quartz
substrate. Then the genes dispersed in the planar droplet array were
amplified using a flat thermal cycler and detected using a scanning
fluorescence microscope. The concentration of the genes was therefore
calculated from the fluorescence image according to the Poisson dis-
tribution theory. As a low-cost, non-contact method of generating pi-
coliter to nanoliter droplets [40,41], the microfluidic impact printing
technology uses disposable microfluidic chips to eliminate the risk of
cross-contamination. Furthermore, the microfluidic impact printing
technology has the ability of dispensing multiple droplets on any po-
sition to forming a multi-volume droplet PCR system, which could ex-
pand the concentration range of measurement. Specially, we verified
the quantitative accuracy of the MIP-ddPCR system across four orders
of magnitude by detecting a series of concentration gradients of GAPDH
gene. And the digital PCR system was further applied to accurately

Table 1
Summary characteristics of different digital PCR methods.
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detect the expression levels of p53 gene in colon cancer samples, re-
vealing the potential of this method to detect single-molecule DNA.

2. Experiment
2.1. MIP-ddPCR setup

The MIP-ddPCR setup is mainly composed of three separate parts: a
microfluidic printing device, a PCR amplification device and a fluor-
escence detection apparatus. Except for the first part, the other two
parts are both general instruments in biological laboratory. Combining
our previous developed microfluidic impact printing devices [40,41],
we set up the droplet printing device using a piezoelectric cantilever
and a microfluidic chip, along with a high-precision three-axis motor-
ized stages (DDS220 & LTS150, Thorlabs, USA). Pulse signals were
generated by a computer and a microcontroller, then amplified by a
home-made high-voltage amplifier to drive the piezoelectric actuator.
The droplets were printed at 10 Hz onto a quartz glass substrate, which
moved with the motorized XY stages along fixed path and was kept
2 mm away from the nozzle in vertical direction, forming a droplet
array or desired droplet pattern (Fig. 1a). At the same time, a CCD
camera was placed under the motorized stages to observe the generated
droplet morphology in real-time. In addition, a humidifier was used to
keep a stable humidity (RH = 80%) in the closed environment to
prevent droplet evaporation. Fig. S1a shows photograph of digital PCR
technology platform based on microfluidic impact printing.

A thermal cycler (HPO1, Beijing Kubo Technology Ltd., China) was
used to control the DNA amplification with MATLAB software (Fig. 1b).
The amplification procedure was initiated with 3 min “UNG inactiva-
tion” at 50 °C and 10 min of “hot start” at 95 °C. Since we were using
AceQ®U + Probe Master Mix, we can perform the two-step PCR, which
combines annealing and extension into one step. Next, the 40 thermal
cycling programs were set to 35 s at 95 °C for denaturation, 75 s at 60 °C
for annealing and extension. Lastly, a cross-sectional image of the
droplet array was taken with a confocal microscope (CSU-X1, Nikon,
Japan) (Fig. 1c) to capture the amplified gene contained in the droplet.
The number of fluorescence droplets was calculated using a self-pro-
gramming algorithm in MATLAB. It is noteworthy that one can use any
other general fluorescence imaging device to take the place of the
confocal microscope.

Dispersion Analysis Minimum reaction =~ Number of Single/multi- Price or cost
Company/author method volume reactions volume
Fluidigm [7,39] Microwell array CCD camera — real time PCR end 0.85 nL 36,960 Single $100,000-
point melting curve analysis $150,000
$800 per chip
Thermo Fisher Scientific =~ Microwell array CCD camera — real time PCR end 33 nL 3072 Single $90,000-
[7,39] point melting curve analysis $190,000
$150 per plate
Bio-Rad [7,39] Water-in-oil microemulsion Automated droplet flow cytometer 1 nL 20,000 Single $89,000
$3 per sample
RainDance [7,39] Water-in-oil microemulsion End point analysis 5pL 10,000,000 Single $100,000
$10-$30 per
sample
He group [36] Water-in-oil microemulsion Capillary-based flow cytometer About 14 pL / Single /
Lin group [35] Inkjet-based droplet- Laser-induced fluorescence About 65 pL / Multi- /
generating detector
Ismagilov group [34] Slip Chip End point analysis 0.2 nL 880 Multi- /
Fang group [37] Sequential Operation Droplet ~ CCD camera — end point analysis 1.2 nL 994 Multi- /
Array (SODA)
Du group [38] Cross-interface emulsification =~ CMOS camera - end point analysis 0.2 nL / Multi- /
Our work Microfluidic Impact Printing End point analysis 2.5nL 1000 per channel  Multi- < $5000
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2.2. Chip fabrication and substrate packaging

The microfluidic chip is designed using the AutoCAD software and
fabricated by soft lithography techniques. Specifically, SU-8 2050
photoresist was spin-coated onto a silicon wafer, patterned by UV ex-
posure through a photolithography mask. Then a 10:1 (w/w) mixture of
the polydimethylsiloxane (PDMS) prepolymer and curing agent (Dow
Corning SYLGARD184, USA) was degassed under vacuum for 15min,
and poured over to a height of about 3 mm, forming a structured mi-
crofluidic substrate. After curing for 2 h at 65 °C, PDMS was gently
peeled off from the master, the structured side of the PDMS was bonded
to a 250 pm-thick of planar PDMS film through oxygen plasma treat-
ment (Mingheng PDC-MG, China) at 75 W and 60Pa for 50s. Finally, a
scalpel was used to cut the print chip nozzle under a microscope
(Fig. 1d). Fig. S1b shows photograph of a disposable microfluidic chip.

The double-layer hydrophobic glass substrate is composed of a
1 mm thick silicone pad and a quartz glass plate
(5 ecm X 5 cm X 1 mm). The silicone pad was cut into a frame (in-
ternal size 4 cm X 4 cm) to prevent oil from spilling, and bonded to
glass through oxygen plasma treatment (Mingheng PDC-MG, China) at
75 W and 60Pa for 50s. The quartz glass was silanized in ethanol
containing trifluorosilane ((1H, 1H, 2H, 2H-perfluorooctyl), 0.0625%
v/v, Sigma, USA) for 5 min and the contact angle of the glass was op-
timized to 81.2° (Fig. S2). This angle not only makes the droplets have a
good adhesion with the silanized glass, but also prevents the droplets
from contamination between each other. After completion of droplet
printing, 1 mL mineral oil (M5940, Sigma, USA) was filled into the
frame-bonded quartz glass to fully overlay the droplets. Owning to the
lower density of the mineral oil (0.84 g/mL), the droplets can be fully
covered by the oil to prevent water evaporation. Finally a glass was
placed on the frame for further protection during thermal cycling
(Fig. 1le). Fig. Slc shows a photograph of a hydrophobically treated
quartz substrate.

2.3. The optical detection apparatus

In order to explore suitable amplification conditions, we have built a
real-time fluorescent PCR detection setup, which consists of a series of
optical devices and an additional imaging system. The optical setup
consisted of a CCD camera (DP72, Olympus, Japan), a 4 X objective
lens (Olympus, Japan), a filter (Semrock, Japan) set of 460/20 nm for
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o
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=
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Fig. 1. Schematic diagrams of a microfluidic printing
droplet digital PCR setup (MIP-ddPCR setup), which
is composed of (a) the microfluidic printer, (b) a flat
thermal cycler and (c) a fluorescence microscope.
Schematic diagrams of (d) the manufacturing process
of a disposable microfluidic printing chip and (e) the
manufacturing process of a hydrophobic quartz
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fluorescence excitation and 532/30 nm for emission collection of the
FAM dye. All fluorescent images were processed by ImageJ (National
Institutes of Health, USA) to obtain the fluorescence intensity value of
each droplet. These values were then normalized, and the real-time PCR
values were calculated. To evaluate the precision of the droplet size, a
high-speed stroboscopic microscope (Photron FASTCAM SA5, Japan)
with 8 X magnification was used to capture the images of the printed
droplets. Then, the images were batch analyzed in the MATLAB (2017a)
to measure the diameter and calculated the coefficient of variation (CV)
of the droplets. Fig. S1d shows photograph of real-time fluorescent PCR
detection device.

2.4. Biological experiments

GAPDH is a house-keeping gene, which is expressed at a high level
in almost all tissues, and the protein expression in the same cells or
tissues is constant. Therefore, it is widely used as a reference gene and is
also used to verify the feasibility of digital PCR [37]. The MIP-ddPCR
system was tested using a serial dilution of the stock DNA spanning four
of magnitude from 1:10* to 1:107. Each 20 puL PCR master mixture
consisted of 10 pL of AceQ®U + Probe Master Mix (2 X ) (Vazyme,
China), which contains Heat-labile UDG anti-pollution system. UDG is
uracil DNA glycosylase, which can quickly degrade UTP-containing
DNA templates at room temperature, and effectively prevent PCR
product from contamination. 1 puL of GAPDH primer (FAM dye) mix
(20 x ) (Hs02758991 g1, ThermoFisher Scientific Inc., USA), 2 pL of
standard GAPDH plasmid template solution (Sangon Biotech, China,
concentration is 4.64 X 10”copies/uL), 6 uL of RNase-free water, and
1 pL of 20 mg/mL bovine serum albumin (BSA) solution.

For the detection of the p53 gene, RNA was extracted from colon
cancer tissues (School of Life Sciences, USTC) with chloroform. Then
cDNA was got from the reverse transcription kit (Takara, Japan). Each
20 uL PCR master mixture consisted of 10 pL of AceQ®U + Probe
Master Mix (2 X ), 1 pL of p53 primer (FAM dye) mix (20 X )
(Hs01034249_m1, ThermoFisher Scientific Inc., USA), 2 uL of cDNA
(diluted in DEPC-water (Sangon Biotech, China)), 6 uL of RNase-free
water, and 1 pL of 20 mg/mL bovine serum albumin (BSA) solution.
Reverse transcription program settings were 37 °C for 15 min, 85 °C for
15s. Detection of p53 gene was using commercial qPCR instrument
(Thermo Fisher, USA) for comparison with MIP-ddPCR technology.
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Fig. 2. (a) Stroboscopic images showing the DI water droplet printing process (scale bar: 1 mm) and (b) probability distribution histograms of the droplet diameters.
(c) Optical image of the droplet array on a quartz chip (scale bar: 4 mm) and (d) probability distribution histograms of the droplet areas. (e) Fluorescence image of
0.1 mg/mL sodium fluorescein droplet array on a quartz chip (scale bar: 4 mm) and (f) probability distribution histograms of droplet intensities.

3. Results and discussion
3.1. Evaluation of the performance of the generated droplets

For digital PCR, the volumetric uniformity of each compartmenta-
lization is of significant importance for the concentration of DNA
template molecules is directly calculated from their distribution in
containers with assumed equal volumes. Here we used a high-speed
photography to verify the volumetric uniformity of printed droplets,
and analyzed the coefficient of variation by image processing. 260 DI
water droplets generated from the microfluidic printer were captured
using a stroboscope. Fig. 2a shows the stroboscopic images during
droplet printing process. With an impact action of the piezoelectric
actuator, one droplet is ejected from the nozzle. The size distribution of
the droplet diameters is displayed by a histogram in Fig. 2b, which
shows an average diameter of 170 pm with coefficient of variation (CV)
of 1.47%, demonstrating a good monodispersity of droplets generated
by microfluidic printing. And the calculated average volume is about
2.5 nL with CV of 4.4%.

To further examine the uniformity of the droplets on the substrate,
we configured a low concentration (dilute to 0.1 mg/mL with deionized
water) of sodium fluorescein (C,oH;oNa,Os) solution as a calibrator to
produce droplet array on a hydrophobically modified glass substrate.
Fig. 2c shows the optical image of droplet array. The CV (=10.9%) of
the droplet areas shown in Fig. 2d was obviously enlarged. This is

mainly due to the morphological changes during the droplets falling
onto substrate and oil covering. The shapes of the droplets on the quartz
substrate weren't as uniform as they were in the air. In addition, we
measured the fluorescence intensities of droplets on substrate. As
shown in Fig. 2e and f and , the calculated CV was 13.2%, a little larger
than the optical value. It is indicated that in the MIP-ddPCR, the
measured fluorescence intensity difference between the positive and
negative containers (droplets) must be large enough to be dis-
tinguished, since the DNA concentration is calculated by counting
number of the positive droplets.

3.2. Real-time PCR analysis

To investigate the amplification parameters of the droplet PCR using
a flat thermal cycling platform, a real-time fluorescence detection setup
was established as shown in Fig. 3a. A 3 by 3 droplet array was gen-
erated by MIP and oil covered on a silanized quartz substrate. Then the
thermal cycle program was set to 35 s at 95 °C, 75 s at 60 °C for 40
cycles. Observed from the experiments, the positive droplets are ob-
viously amplified (Fig. 3b), similar in the trend to the traditional qPCR
method. The results showed that the droplets were amplified and
reached the plateau after 37 cycles, while the positive and negative
droplets showed significant contrast of more than three times, which
laid a good experimental foundation for the subsequent digital PCR
experiments.
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Fig. 3. Real-time PCR detection of droplets. (a) Schematic diagram of real-time
fluorescent PCR detection device. (b) Real-time amplification of positive
fluorescent droplets and negative fluorescent droplets. The green line is a po-
sitive curve and the red line is a negative curve, indicating that the fluorescence
intensity of the positive droplet amplification is significantly enhanced com-
pared to the negative droplet. Threshold is 10 X the standard deviation of
background. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

3.3. Performance of the MIP-ddPCR

A series of diluted GAPDH plasmid DNA solutions spanning three
orders of magnitude from 1:10% to 1:10° were generated and im-
plemented using the MIP-ddPCR to verify its absolute quantitative
performance (Fig. 4). The PCR mixture was prepared in advance and all
ingredients were premixed prior to dripping onto the substrate. During
amplification, the fluorescence intensities of the negative droplets
containing no DNA molecules had little change. Only the droplets
containing target DNA molecules would accumulate fluorescence as a
result of TagMan probe cleavage, the average intensity of which was
three times that of the negative droplets, ensuring an obvious distin-
guish between positive and negative droplets (Fig. S3a). Fig. 4a-e
shows fluorescent images of a negative control and four different con-
centrations of 25 by 40 droplet array. Number of positive droplets in-
creases with the DNA concentration. Details of the intensity distribu-
tions are shown in Fig. S3.

In the experiments, there may be two or more DNA molecules in one
droplet. Therefore, it is necessary to calculate the number of DNA ac-
curately by mathematical correction of the Poisson distribution [42].
According to the Poisson distribution formula: A = -In (1-p), we can get
the relationship between the expected fraction of the positive droplets p

Negative
control

f.
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and the average number of DNA template copies per droplet A, so as to
calculate the DNA concentration. As shown in Fig. 4f, the results show
that the measured concentration in the experiment has a good corre-
lation with the actual concentration (R2 = 0.997), which verifies the
feasibility of MIP-ddPCR system in quantitation of gene targets.

In conventional pump-based droplet formation process, a large
amount of expensive biological reagent was wasted for it needs a period
to stabilize the flow process before uniform droplet generation.
Moreover, the reagent always remains in the connecting tube and the
chip channel due to the physical separation between the droplet gen-
erating chip and the injectors [43]. Additionally, in biological appli-
cations, sample waste is unacceptable, such as single-cell whole-
genome sequencing. Remarkably, the least volume of the reagent used
for our droplet array generation is less than 2.7 uL with a tiny dead
volume of 0.2 pL here, which means utilization ratio of the reagent is
more than 92.6%.

The measurable concentration range of digital PCR in uniform vo-
lume is usually limited by the number of droplets. Therefore, a lot of
digital PCR methods expand their detection range by increasing the
number of reaction units. On the other side, multi-volume digital PCR
can significantly reduce the total number of reactors and achieve a
wider dynamic range [44]. Thanks for the in-situ printing ability of
MIP-ddPCR system, we set larger reaction system volume by printing
multiple droplets on each position. Here, a 20 by 20 drop array with
each drop volume of 70 nL is printed within 4 min for detecting lower
DNA concentrations (Fig. 5a). The DNA expression achieved in positive
droplets was clearly distinguished by nearly three times the fluores-
cence intensity of the negative droplets (Fig. S4a). Fig. 5b shows that
the measured concentration is in good agreement with the actual con-
centration (R? = 0.995). This indicates that the increased droplet vo-
lume can further expand the detection range of MIP-ddPCR technology
and detect a lower order of DNA concentration. In other words, the
multi-volume digital PCR technology can be used to detect samples
with larger differences in concentration by changing the volume of the
droplets. And it can reduce the dilution processes of detection samples
with unknown concentration.

3.4. P53 genes detected by MIP-ddPCR system

Cancer has become a major public health problem worldwide, with
high morbidity and high mortality rates [45]. Recent statistics show

Fig. 4. MIP-ddPCR results for a series of dilution
concentrations of GAPDH. For each concentra-
tion, the experiment was repeated three times.
(a) A control group, which is without DNA
template, shows no positive result. (b)-(e) A
series of dilutions of GAPDH plasmid DNA from
1:10* to 1:10° as experimental group. As the
concentration increases, more positive droplets
are observed (scale bar: 4 mm). (f) The con-
centration of the DNA template calculated from
the number of positive droplets, where the ob-
served concentration matches well with the ac-
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Fig. 5. (a) 20 by 20 drop array with each drop volume of 70 nL (concentration diluted 1:107) (scale bar: 3 mm). (b) According to the Poisson distribution, the
observed concentration agrees well with the actual concentration (R> = 0.995) and expands the detection range by an order of magnitude.
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Fig. 6. Fluorescence images of colon cancer tissues (a) and adjacent nontumorous tissues (b), which were detected by MIP-ddPCR technology (scale bar: 4 mm). (c)
Absolute quantitative concentration analysis of colon cancer tissues and adjacent nontumor tissues by MIP-ddPCR technology and relative quantitative concentration
analysis of colon cancer tissues and adjacent non-tumor tissues by commercial qPCR technology.

that the p53 genes is overexpressed in colon cancer tissues, which has
been demonstrated as an independent predictor of tumor recurrence in
colon cancer patients [ [46-49]]. Here, we use the MIP-ddPCR tech-
nology to detect the expression of p53 gene in colon tumor tissues and
adjacent nontumorous tissues [50,51]. We extracted RNA from tissue
samples, and obtained their cDNA by reverse transcription, while the
housekeeping GAPDH gene was used to normalize the amount of dif-
ferent input ¢cDNA from different tissues. The PCR mixture was con-
figured with cDNA as a template, and the p53 copies were detected by
the MIP-ddPCR setup (Fig. 6a and b) and commercial qPCR instrument.
As shown in Fig. 6¢, p53 was highly expressed in tumor tissues, and the
copies of p53 gene in tumor tissues was 1.1 X 10° copies/mL, which
was one order of magnitude higher than that in nontumorous tissues
(7.2 x 10° copies/mL). The presence of larger concentration of p53
gene in the colon tumor indicates a significant association between p53
expression levels and colon cancer. And this result is consistent with the
that of qPCR experiments. However, different from the relative quan-
tification by qPCR, the absolute quantitation of the copies of cDNA can
be directly achieved by the MIP-ddPCR, which plays an important role
in the detection of differential gene expression in tumors and normal
tissues. Different tumor grades are associated with distinct gene ex-
pression profiles. Accurate and quantitative detection of the differential
gene expression helps to gain insight into the extent of expression dif-
ferences underlying malignancy and provides a quantitative standard
for cancer-associated marker genes that does not require a reference.
Overall, our MIP-ddPCR technology has great potential as a tool for the
analysis of biological diagnosis related gene expression of cancer pa-
tients.

4. Conclusions

In summary, we develop an absolute quantitative digital PCR
technology by dispersing, amplifying and detecting target genes in
planar droplet array. This technology provides a simple and lab-af-
fordable method to perform high-sensitivity absolute genetic analysis
for researchers in the biological laboratory, since the droplet digital
PCR setup uses only a low-cost microfluidic printer, combined with
other general laboratory instruments, i.e. an in-situ PCR device and a
fluorescence microscope are enough. As a non-contact and cross-con-
tamination free method of generating picoliter to nanoliter droplets, the
microfluidic impact printing technology has no requirement of external
pumps and valves which are usually adopted by other digital PCR
methods. And it has high utilization ratio of the expensive biological
reagents (> 92.6%), which is especially suitable for the detection of
rare bio-targets. The droplets are generated from a disposable micro-
fluidic chip, saving the tiresome washing process for operators.
Moreover, using printing method to generate addressable microdroplets
on planar substrate provides convenience of marking and extracting
target objects in subsequent experiments, as well as controlling the
volume of each droplet container.

DNA templates across four orders of magnitude have been accu-
rately detected by using the MIP-ddPCR, and this concentration range
could be further expanded through dispensing multi-volume droplet
containers using the microfluidic printing. In addition, we found that
this method can distinguish between cancer and normal tissues by de-
tecting cancer markers, which confirms its clinical application poten-
tial.
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Limited by the working area of the thermal cycler, the droplet array
currently can only contain one thousand droplets on the slide.
Furthermore, genetic analyses on a larger array of droplets can be
realized by using a flatbed thermal cycler with a larger footprint. In
addition, this printing system can be loaded with multiple channels,
which provides a high-throughput droplet generation ability. Such a
fully automated and highly adaptive PCR technology has great potential
to be applicable to a wide range of biomedical applications, such as
early diagnosis of cancer, non-invasive prenatal diagnosis, single cell
analysis, high-throughput drug screening and etc.
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