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Summary: Quantitative evaluation of dimensional
parameters from noisy atomic force microscopy

(AFM) images was investigated. Non-local means

(NLM) denoising was adopted to reduce noise and
maintain fine image structures. Major tuning parameters

in NLM filtering, such as the patch size and the window

size, were optimized on simulated surface structures.
The ability of dimensional evaluation from noisy data

was demonstrated to be improved by almost 15 times.

Finally, NLMfiltering with optimal settings was applied
on experimental AFM images, which were scanned on a

patterned few-layer graphene specimen. Evaluations of

the step height and the pattern size were verified to
be much more accurate and robust. Such a data

processing method can enhance the AFM dimensional

measurements, particularly when the noise-level is
reached. SCANNING 38:113–120, 2016.© 2015Wiley

Periodicals, Inc
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Introduction

Deviceswith critical dimensions at themicro-and-nano

scale have attracted many attentions owing to their

superior functional performances (Carlson et al.,2012). In
various characterizations, themeasurement and evaluation

of dimensional parameters with ultrahigh precision are of

fundamental importance. Toward this purpose, many
techniques have been developed (Hansen et al., 2006).
Among them, atomic force microscopy (AFM) is one of

the most powerful and flexible tools. AFM and its analogs
have remarkable capabilityof two-and-a-half-dimensional

measurements of almost all kinds of samples, and they

have obtained tremendous applications in surface dimen-
sional nanometrology (Dai et al., 2006).

Under the same noise level, the measured data can

gradually emerge relatively low signal-to-noise ratio
along with the decrease of the critical dimensions of the

sample structures. Consequently, the quantitative deter-

mination of geometrical parameters may become rather
difficult. For instance, few-layer graphene (FLG) based

devices with the thickness ranging from mono-atomic

layer to several layers have appeared as a leading-edge
research area. Of such devices, many interesting

physical properties depend closely on the number of

layers (Dimiev et al., 2011). However, determination of
the graphene layers or the equivalent step heights by

AFM has a large uncertainty as reported in literature

(Nemes-Incze et al., 2008). The possible reasons may
rely on the improper imaging parameters, the substrate

roughness (Lui et al., 2009) and the low signal-to-noise

ratio in data acquisition. Reliable analysis methods
are still somewhat lacking (Baumann et al., 2014).

In addition, we should note that though the measure-

ment resolution of AFM reaches sub-nanometer scale,
the effective dimensions of common calibration stand-

ards are mostly much larger. The existence of such a gap

may lead to incomplete characterization of the micro-
scope performance. To overcome this barrier, reference

structures with reduced dimensions and associated

analysis methods are highly demanded. Therefore,
calibration standards, for instance silicon crystals with

mono-atomic steps, have been proposed to enhance

AFM’s usefulness as a metrology tool (Orji et al., 2004).
When measuring all these ultra-thin films or super-

small-scale structures with an ordinary AFM, we

frequently encounter the practical situations that the
measurands are rather close to the noise level. As a

result, the quantitative dimensional evaluation from the
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noisy data becomes one of the major challenges
(Edwards, ’97).

For AFM data denoising, conventional Gaussian

smoothing is quite popular owing to its simplicity and
robustness (Liu et al., 2011). However, Gaussian

smoothing tends to blur certain sharp structures

simultaneously because a local average kernel is
applied. This over-smoothing effect is unacceptable

for quantitative dimensional evaluation. The ideal way

is to keep all the fine geometries while remove the noise
completely. Non-local means (NLM) filtering is

probably one of the most effective approaches that

can meet this challenge. After the first introduction of
such a data adaptive denoising method (Buades et al.,
2005), several modifications have beenmade to improve

its performances and to implement it in various research
fields (Wang et al., 2012; Wu et al., 2013). However,
NLM algorithms are usually employed to enhance the

image quality (Manj�on et al., 2008). In dimensional
measurements, we concern more about the quantitative

values and their accuracy. Until now, a systematic

investigation on applying NLM for surface metrology
remains lacking. Furthermore, parameters for tuning the

NLM performances should be optimized accordingly

(Salmon, 2010).
Concerning all these situations, here we implemented

NLM in AFM data processing to improve dimensional

measurements. Especially, the case of measuring
sample dimensions, which are comparable with the

noise level, was addressed. First, topography datasets

with precisely assigned geometrical characteristics and
variable noise strengths were numerically generated.

Then, the main tuning parameters in NLM algorithms

were optimized for better accuracy. Last, using the
optimal parameters, the capability of NLM filtering was

verified on experimental AFM data, which were

acquired on patterned FLG structures.

Methods

Simulation Data Generation

As a prototype of sample structures for evaluating the

NLM performances, a stepped surface is numerically

generated with the random roughness simulating the
noise distribution. The lower half surface has a mean

height hl, and a height standard deviation s. The upper
half surface has a mean height hu and the same standard
deviation s. For both half surfaces, Gaussian height

distributions are assumed and surface autocorrelation

functions are in the form of,

cðx; yÞ ¼ s2exp �2:3
x
tx

� �2

þ y
ty

� �2
" #( )

ð1Þ

where tx and ty are the autocorrelation lengths in x and y
directions, respectively. The factor 2.3 means that the

autocorrelation length here is taken at the 10% decay. A

general relation tx ¼ ty is applied, that is, the noise is
spatially homogenous in the simulations (Chen et al.,
2013). Considering the fact that the measurement noise

should not be too much spatially correlated, the
autocorrelation length is assigned with a small magni-

tude, for instance, 1 or 2 pixels.

The roughness surfaces were generated using the
two-dimensional (2D) digital filter method (Liu et al.,
2012). The topographic data were stored in a 2D matrix

with 128� 256 pixels as depicted in Figure 1a. We
applied a slight height difference between the upper half

surface and the lower half surface, and hs¼ hu – hl was
set as 0.5 arbitrary units. The standard deviation s was
normalized to 1 unit and the autocorrelation lengthwas 2

pixels. From the height histogram (Fig. 1b), we can find

that the step signal is actually immersed in the noise and
only a unique near-Gaussian distribution peak is

observable. Therefore, the existence of the surface

step cannot be clearly figured out either from the height
histogram or by the step function fitting. After

smoothing, still only one distribution peak presents

with the mean central height of 0.24 units, which is the
same as the one deduced from the raw surface data.

Therefore, the assigned step of 0.5 units remains

undistinguishable and themain effect is that the standard
deviation is reduced from 1.23 units to 0.73 units. Here,

a normalized 5� 5 low-pass Gaussian filter was applied

Fig 1. Typical simulated noisy surface for exploring the effect
of NLM filtering in dimensional measurement. (a) Three-
dimensional view of the generated surface. The upper half (left
part) surface and the lower half (right part) surface have a height
difference of 0.5 units. (b) Height distribution histograms of the
raw surface and the Gaussian-smoothed surface. From both
histograms, the presence of a step is undistinguishable.
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with the kernel matrix as,

G ¼

0:0030 0:0133 0:0219 0:0133 0:0030

0:0133 0:0596 0:0983 0:0596 0:0133

0:0219 0:0983 0:1621 0:0983 0:0219

0:0133 0:0596 0:0983 0:0596 0:0133

0:0030 0:0133 0:0219 0:0133 0:0030

26666664

37777775
ð2Þ

By carefully adjusting the filter kernel, the residual

noise might be further removed. However, real surface
structures including the step edges will be blurred

simultaneously. When the step height is comparable

with the noise level, Gaussian smoothing is not very
effective. Thus, we have to consider other methods and

NLM filtering is an appropriate approach. Generally, it

recovers the signal at each sampling point by
employing a weighted average, which is a robust

similarity measure taking the neighboring pixels into

account (Buades et al., 2005). NLM filtering has the
capability of removing the noise efficiently while

preserving fine features in the original image (Wang

et al., 2012).

Non-Local Means Denoising

In this section, we briefly review the NLMprocessing

procedures. Detailed principles can be found in the
references (Buades et al., 2005; Wu et al., 2013). A
scanned AFM image can be described as z ¼ fzigieI,
which is defined on a 2D spatial domain I. The dataset z
contains the true topography, certain artifacts and the

noise. Separations of specified image artifacts, such as

those induced by scanner nonlinearity (Jin and Bruck,
2005) and transient responses (Chen and Huang, 2010),

need a thorough analysis of the corresponding error

sources and a subsequent proper modeling. For
simplicity, we neglect these distortions and only the

random noise is considered, that is,

zi ¼ bzi þ ni ð3Þ

where bzi is the expected true height, and ni is the

Gaussian noise with a zero mean and an unknown

variance s 2.
In the NLM algorithms, the real surface height at

each sampling point is estimated by applying a weighted

sum of the noisy data within a search window W,

bzi ¼ X
j2W

wi;j

wi
zj ð4Þ

In the above equation, theweight functionwi,j is (Buades

et al., 2005),

wi;j ¼ exp �
X
k2P

ðziþk � zjþkÞ2
g2

" #
ð5Þ

Here, g is a parameter that regulates the smoothing
strength via controlling the decay of the exponential

function. As shown in the equation, the NLM approach

takes not only the characteristic in a local domain but
also the geometrical configuration in a whole neighbor-

hood into account by using a proper patch P. The

summation of all the weights, which behaves as a
normalizing constant in Equation 4, is calculated by,

wi ¼
X
j2W

wi;j ð6Þ

In the following, we adopted a modified weight
kernel as proposed by Wu and his cooperators (Wu

et al., 2013). First, the difference between the two

patches, which are squared neighborhoods centering at
zi and zj, can be evaluated,

Di;j ¼
X
k2P

ðziþk � zjþkÞ2
2s2

ð7Þ

Here, Di,j is interpreted as the standard x2 test to

measure patch similarity (Thacker et al., 2010).

Comparing Equations 5 and 7, it is obvious that they
are somewhat similar, but the measure of the patch

similarity in the latter one is statistically rigorous.

Therefore, instead of using the exponential decay
function, a probabilistic weight can be adopted, which

is deduced as (Wu et al., 2013),

wi;j ¼
ðDi;j=g i;jÞhi;j=2�1

expð�Di;j=2g i;jÞ
2hi;j=2Gðhi;j=2Þ

ð8Þ

Here, G is the gamma function. Parameters gi,j and hi,j
are,

g i;j ¼
P

k;l2P cov½diþk;jþk; diþl;jþl�
2jPj ð9Þ

hi;j ¼
jPj
g i;j

ð10Þ

In above equations, |P| denotes the number of pixels in
patch P. And we have,

di;j ¼ ðzi � zjÞ2
2s2

ð11Þ
Combining Equations 8–11, the weight function can

be calculated and the filtered image is finally obtained

using Equation 4. The last critical issue is that the noise
variance s2is unknown and an estimated value has to be

adopted,
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Di;j ¼
bDi;j

r2
ð12Þ

Here, bDi;j represents the patch similarity measure

calculated using the estimated variance and r2 is a
tuning parameter.

Figure 2 shows typical NLM denoising results of the

raw image presented in Figure 1. The existence of a step
can be clearly found in both the filtered topography and

its corresponding height histogram. In filtering, the

patch size and the window size were 7� 7 and 21� 21,
respectively. The tuning factor r2 was 3 and an

estimated ŝ of 0.59 units was used. From the histogram,

the lower half surface locates at the zero-height position
with a standard deviation of 0.14 units and the upper half

surface centers at a mean height of 0.48 units with a

standard deviation of 0.15 units. Then, the step height is
determined to be 0.48 units, which is in a good

agreement with the assigned 0.5 units. By implementing

NLMfiltering, the step height was reliably restored from
the noisy data.

Results and Discussion

Parameters Optimization

From the above brief introduction of the probabilistic

NLM, it is obvious that three main parameters can be
adjusted, namely the patch size, the window size and

the tuning factor r. As can be seen in Equation 12, the

tuning factor is adopted to alter the estimated bs to match
the real standard deviation s, which is prior unknown in
practical situations. Along with the increase of s, a
larger patch and a larger search window are generally
required to make the patch comparison robust and

the noise removal capacity enhanced by finding more
similar imaging pixels. On the other hand, the patch size

should be small enough to preserve fine structures. It is

therefore necessary to optimize these NLM parameters
for applications in surface metrology.

Toward this purpose, we applied a series of

calculations on a numerically designed surface similar
to that presented in Figure 1. The main geometrical

parameters are listed as autocorrelation length of 1 pixel,

step height of 1 unit, and standard deviations of both the
lower half surface and the upper half surface of 1 unit.

Note that the height histogram of the original surface

fails to provide clear evidence on the presence of a step.
Figure 3 shows the results of optimizing the patch size.

Here, we used the same window size of 15� 15 and the

tuning parameter r2 of 1. The patch size was varied from
3� 3 to 11� 11. From the results, the determined step

height first increases and then decreases with the

increase of the patch size while the width of the height
distribution peak behaves conversely. Under each set of

NLM parameters, the step height can be precisely

determined with the relative error ranging from �0.5%
to�1.2%. In addition, the width of the distribution peak

is the smaller the better for an accurate evaluation.

Considering these requirements, a patch size within the
range from 5� 5 to 9� 9 as covered in the shaded

region is a better choice.

Figure 4 shows the optimization results of the
window size. Here, the patch size was selected to be

5� 5 and the tuning factor r2 was set to 1 for each NLM
processing. When the window size is varied from 7� 7
to 25� 25, the measured step height first approaches

closer to the assigned value and then reaches a stable

region. For the height distribution peak width, it
decreases monotonously with the increase of the

window size. It should be mentioned that the computa-

tional cost will also increase if a larger window is
adopted. Thus, to make a compromise, a window size

ranging from 13� 13 to 23� 23 as illustrated in the

shaded region should be effective enough.

Fig 2. NLM filtering on the simulated surface. (a) Three-
dimensional view of the filtered surface. (b) Comparisons of the
height histograms of the raw surface and the filtered surface. The
assigned step of 0.5 units is clearly visible after NLM filtering.

Fig 3. Optimization of the patch size in NLMfiltering. Here, the
adopted window size is 15� 15 and the tuning factor r2 is 1. The
dashed line indicates the expected step height and the optimal
range of the patch size is shaded.
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The last parameter to be optimized is the tuning

factor. We performed the analysis on two sets of

surfaces. The first one was assigned with the autocorre-
lation length of 1 pixel and the other with the

autocorrelation length of 2 pixels. All the other

parameters were the same as those in the analyses
corresponding to Figures 3 and 4. A patch size of 5� 5

and a window size of 21� 21 were applied, with both in

the optimal regions. The evaluated step height and the
height distribution peak width are presented in Figure 5.

Note that they are respectively plotted as the mean value

and the error bar. When the autocorrelation length of
the spatial noise is 1 pixel, the suitable r2 value falls in
the range from 1.0 to 2.0. However, when the

autocorrelation length increases to 2 pixels, the optimal
range of parameter r2 is from 2.5 to 3.5. That is to say, if

the noise distribution is somewhat spatially correlated,

the tuning factor r2 has to be increased despite the fact
that the noise variance s2 is the same.

Measurable Limit

To further explore the advantage of NLM processing,

a rough estimation on the improvement of the
measurable limit is carried out. A series of surfaces

were simulated with the step height decreasing from 3.0

to 0.2 units. For each surface, the autocorrelation length
was 1 pixel and the standard deviation of the surface

height was 1 unit. Following previous optimizations,

the patch size of 5� 5, the window size of 21� 21 and
the tuning factor r2 of 1.5 were selected. Figure 6

depicts the mean height positions together with the

distribution peak widths of both the lower half surface
and the upper half surface obtained from the filtered

data. A step height of 0.2 units can be accurately

measured under the noise variance s2 of 1 unit.
However, the step becomes undistinguishable when

the height further decreases to 0.1 units. The detection

limit in this case is thus approximately 0.2 units.
For a simple analysis, the height distributions of the

lower surface and the upper surface have the Gaussian

form of,

yl ¼ A exp � z2

2s2

� �
ð13Þ

yu ¼ A exp �ðz� hÞ2
2s2

" #
ð14Þ

Here, A is the amplitude of the maximum peak and h
is the height difference as schematically illustrated in

the inset of Figure 6. Using the Rayleigh criterion, the
two peaks are unable to be separated, i.e. the step height

is immeasurable when the minimum saddle value

exceeds 81% of the maximum peak (Lentzen, 2008).
The local minimum of (ylþ yu) locates at z¼ h/2,

Fig 4. Optimization of the window size in NLM filtering. Here,
the adopted patch size is 5� 5 and the tuning factor r2 is 1. The
dashed line represents the expected step height and the optimal
range of the window size is shaded.

Fig 5. Optimization of the tuning factor r2 in NLM filtering.
Here, the patch size is 5� 5 and the window size is 21� 21. The
optimal range of the tuning factor is shaded. If the noise is
spatially correlated, the optimal tuning factor should increase
accordingly.

Fig 6. Detection limit of the step height after NLMfiltering. The
assigned height decreases from 3.0 units to 0.2 units. The mean
heights and widths of distribution peaks of the upper half surface
and the lower half surface are plotted. The inset schematically
sketches the Rayleigh criterion in analyzing the step height by
distribution histogram.
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ymin ¼ 2A exp � h2

8s2

� �
ð15Þ

And the maximum locates at z¼ 0 or z¼ h,

ymax ¼ A 1þ exp � h2

2s2

� �� �
ð16Þ

By solving the equation ymin ¼ 0:81ymax, the limit of

the detectable height difference can be estimated by,

hlim ¼ 2:64s ð17Þ
For the raw surface data, s equals 1 unit and so the

minimumdetectablehlim is2.64units.AfterNLMfiltering
with the optimized settings, we can usually reduce s to a

magnitude of 0.07 units. Then, the detectable step height

limit hlim is 0.18 units and this magnitude is in a close
agreement with the numerical simulations presented in

Figure 6. NLM improves the measurable limit up to

15 times, which is rather promising.

Applications on Experimental Images

As a further demonstration, we applied the NLM

method on experimental AFM data. The sample

structures were fabricated by anisotropic etching on a
piece of graphene sheet, with a patterned array of holes

as defects (Shi et al., 2011). Figure 7a shows the raw

image and the measured image quality is generally
acceptable with clear hexagonal pattern. However,

obvious noise presents in the topography, which can

distort the dimensional measurement. The filtered image
is depicted in Figure 7b. Here, the patch size of 7� 7, the

window size of 21� 21 and the tuning parameter r2 of 3
were selected within the optimal ranges. In fact, we have

also tried other parameters in filtering (data not shown),

and the above settings are among the best ones. Such
results additionally demonstrate that the previous

optimizations can provide a general guide on the

selection of NLM parameters. From the smoothed
image and the comparison of sectional profiles in

Figure 7b and c, most noise is removed and no obvious

distortions on the step edges occur. These characteristics
of NLM smoothing prevail against many other methods.

Figure 8 compares the height histograms of the

topographic data with and without the NLM pre-
processing. The step height determined from the

original surface data is 2.37 nm, and the width of the

height distribution peak is 0.49 nm. After filtering, they
are 2.46 nm and 0.19 nm, respectively. The two step

heights are in a close agreement, with a relative

discrepancy of approximately 3.8%. Considering the
interlayer distance in bulk graphite of 340 pm (Lui et al.,
2009), the steps contain approximately 7 graphene

layers. In this case, the height signal is larger than
the noise level satisfying h > 2:64s and therefore, it can

be determined accurately even using the raw data.

The notable advantage of NLM filtering is that the
filtered image shows almost binary features and

undistorted original steep steps. We can easily extract

the pattern boundaries for further enhanced evaluations
of xy dimensions. Figure 9 illustrates the automatic

determination of the lengths and the angles of the

hexagon-like graphene patterns. The flowchart is
sketched in Figure 9a. First, NLM filtering is performed

on the raw data using the optimized tuning parameters.

Such an operation usually leads to fairly clean image
(see Figure 7b). Second, conventional edge detection

and boundary tracing are applied. Owing to the

superior image quality and almost binary height
distribution of the filtered data, the edge detections

are rather simple and robust. Third, the extracted

Fig 7. Application of NLM in processing practical AFM data.
(a) Raw AFM image of a patterned few-layer graphene. (b)
Filtered image. (c) Comparison of sectional profiles before and
after filtering. The profiles are taken from the same position, as
illustrated by two arrows in the topography images.

Fig 8. Histograms of height distributions before and after NLM
filtering.
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boundaries are linearly fitted as presented in Figure 9b.
Last, the six fitted lines in each pattern are used to

calculate the lengths and the angles. With such a

procedure, the hexagon edge length is evaluated to be
633.43� 43.82 nm and the angle is 120.00� 5.16

degrees. Because the fluctuations in length and angle

also contain AFM measurement errors, the fabrication
errors should be even smaller than the determined

ones, i.e. relative errors of 6.9% for the edge length

and 4.3% for the angle. Two indications can be drawn
from the results. First, NLM filtering can simulta-

neously improve the dimensional measurement in the

xy plane. Second, the FLG shapes are nearly perfect
uniform hexagons and the steps are an integer multiple

of the single-layer thickness.

In addition to their applications in novel electronic
devices (Shi et al., 2011), the controllable and scalable

geometrical patterns enable such nanostructures prom-

ising candidates for calibrating AFM at a smaller
dimensional scale than conventional calibration stand-

ards. Using the nearly ideal hexagonal graphene

patterns, it is hopeful to calibrate various behaviors
of the microscopes, for example, scan orthogonality

and thermal drift. However, toward these potential

applications, further investigations on the stability of
the FLG structures and the ultimate size limit of

fabrication are necessary. Anyway, the NLM techni-

que is capable of enhancing reliable dimensional
evaluations under the conditions of noisy measure-

ments and calibrations.

Conclusions

Quantitative dimensional evaluation from noisy data

was investigated. With NLM denoising, noisy AFM

images can be greatly smoothed while keeping fine
surface structures undistorted. By systematic numerical

investigations, the tuning parameters in NLM algo-

rithms were optimized, including the patch size, the
window size and the tuning factor. The optimizations

were performed on a virtual surface step with random

roughness simulating the noise distribution. Results
demonstrated that a patch size ranging from 5� 5 to

9� 9 and a window size ranging from 13� 13 to

23� 23 can usually benefit more accurate image
measurements. If the noise is somewhat spatially

correlated, the NLM tuning factor should increase

accordingly for effective noise elimination.
After parameters optimization of NLM filtering, the

ability of dimensional evaluation from noisy data was

demonstrated to be improved by almost 15 times.
Finally, the method was applied on experimental AFM

images of hexagonal FLG patterns. With the NLM

image pre-processing, the evaluations of step height
and pattern size were verified to be robust and

accurate. Such a data analysis method can enhance

the evaluation of structural dimensions, especially
when they are close to the noise-level of microscopic

measurements.
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